zoukankan      html  css  js  c++  java
  • hdu 1015 Safecracker

    Safecracker

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 12203    Accepted Submission(s): 6319


    Problem Description
    === Op tech briefing, 2002/11/02 06:42 CST === 
    "The item is locked in a Klein safe behind a painting in the second-floor library. Klein safes are extremely rare; most of them, along with Klein and his factory, were destroyed in World War II. Fortunately old Brumbaugh from research knew Klein's secrets and wrote them down before he died. A Klein safe has two distinguishing features: a combination lock that uses letters instead of numbers, and an engraved quotation on the door. A Klein quotation always contains between five and twelve distinct uppercase letters, usually at the beginning of sentences, and mentions one or more numbers. Five of the uppercase letters form the combination that opens the safe. By combining the digits from all the numbers in the appropriate way you get a numeric target. (The details of constructing the target number are classified.) To find the combination you must select five letters v, w, x, y, and z that satisfy the following equation, where each letter is replaced by its ordinal position in the alphabet (A=1, B=2, ..., Z=26). The combination is then vwxyz. If there is more than one solution then the combination is the one that is lexicographically greatest, i.e., the one that would appear last in a dictionary." 

    v - w^2 + x^3 - y^4 + z^5 = target 

    "For example, given target 1 and letter set ABCDEFGHIJKL, one possible solution is FIECB, since 6 - 9^2 + 5^3 - 3^4 + 2^5 = 1. There are actually several solutions in this case, and the combination turns out to be LKEBA. Klein thought it was safe to encode the combination within the engraving, because it could take months of effort to try all the possibilities even if you knew the secret. But of course computers didn't exist then." 

    === Op tech directive, computer division, 2002/11/02 12:30 CST === 

    "Develop a program to find Klein combinations in preparation for field deployment. Use standard test methodology as per departmental regulations. Input consists of one or more lines containing a positive integer target less than twelve million, a space, then at least five and at most twelve distinct uppercase letters. The last line will contain a target of zero and the letters END; this signals the end of the input. For each line output the Klein combination, break ties with lexicographic order, or 'no solution' if there is no correct combination. Use the exact format shown below."
     
    Sample Input
    1 ABCDEFGHIJKL 11700519 ZAYEXIWOVU 3072997 SOUGHT 1234567 THEQUICKFROG 0 END
     
    Sample Output
    LKEBA YOXUZ GHOST no solution
     
    Source

    暴力搜素所有可能的结果

    #include<iostream>
    #include<stdio.h>
    #include<algorithm>
    #include<string.h>
    #include<math.h>
    //#define res ((ans[0]-'A'+1)+pow(ans[1]-'A'+1,2)+pow(ans[2]-'A'+1,3)+pow(ans[3]-'A'+1,4)+pow(ans[4]-'A'+1,5))
    using namespace std;
    int len;
    bool flag;
    bool vis[30];
    char ans[30];
    int n;
    char ch[30];
    int pow(int a,int b)
    {
        int tmp=1;
        for(int i=0;i<b;i++)
            tmp*=a;
        return tmp;
    }
    void dfs(int num)
    {
        if(num>5) return;
    
        if(num==5)
        {
            int tmp=((ans[0]-'A'+1)-pow(ans[1]-'A'+1,2)+pow(ans[2]-'A'+1,3)-pow(ans[3]-'A'+1,4)+pow(ans[4]-'A'+1,5));
            //cout<<tmp<<endl;
    
            //if(ans[0]=='Y'&&ans[1]=='O')printf("%s %d
    ",ans,tmp);
            if(tmp==n) flag=true;
            return;
    
        }
        for(int i=0; i<len; i++)
        {
            if(flag) return;
            if(!vis[i])
            {
                ans[num]=ch[i];
                vis[i]=true;
                dfs(num+1);
                vis[i]=false;
            }
        }
    }
    bool cmp(char a,char b)
    {
        return a>b;
    }
    int main()
    {
    
        while(scanf("%I64d %s",&n,ch))
        {
            if(n==0&&!strcmp(ch,"END")) break;
            len=strlen(ch);
            sort(ch,ch+len,cmp);
            for(int i=0; i<30; i++)
                vis[i]=false;
            flag=false;
            dfs(0);
            if(flag)
                printf("%s
    ",ans);
            else printf("no solution
    ");
    
        }
        return 0;
    }
    View Code
  • 相关阅读:
    ADF_Tutorials系列17_ADF Faces_使用布局组件
    ADF_Tutorials系列17_ADF Faces_开发下拉和删除
    ADF_Tutorials系列17_ADF Faces_ADF预定义组件的创建和使用
    ADF_ADF Faces系列6_ADF数据可视化组件简介之建立Thematic Map Component
    ADF_ADF Faces系列5_ADF数据可视化组件简介之建立GeographicMap/Pivot Table/Gantt Chart
    ADF_ADF Faces系列4_ADF数据可视化组件简介之建立BarChart/Gauge/ExportExcel
    ADF_ADF Faces系列3_ADF数据可视化组件简介之建立Master-Detail
    ADF_ADF Faces系列2_使用JSF开发基于Ajax的用户界面:ADF Faces富客户端组件简介(Part2)
    ADF_ADF Faces系列1_使用JSF开发基于Ajax的用户界面:ADF Faces 富客户端组件简介(Part1)
    Form_Form Builder国际化多语言开发(案例)
  • 原文地址:https://www.cnblogs.com/superxuezhazha/p/5537737.html
Copyright © 2011-2022 走看看