zoukankan      html  css  js  c++  java
  • hdu 3037 Saving Beans Lucas定理

    Saving Beans

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 4315    Accepted Submission(s): 1687


    Problem Description
    Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

    Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.
     
    Input
    The first line contains one integer T, means the number of cases.

    Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.
     
    Output
    You should output the answer modulo p.
     
    Sample Input
    2 1 2 5 2 1 5
     
    Sample Output
    3 3
    Hint
    Hint For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on. The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are: put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.
     
    Source
     

     裸的lucas定理,直接调用函数即可。

    我暂时不明白为什么是C((n+m),m),以后再研究吧。

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    using namespace std;
    
    typedef long long ll;
    
    ll quick_mod(ll a,ll b,ll m){
        ll ans = 1;
        a %= m;
        while(b){
            if(b&1)
                ans = ans * a % m;
            b >>= 1;
            a = a * a % m;
        }
        return ans;
    }
    
    ll getC(ll n, ll m,ll mod){
        if(m > n)
            return 0;
        if(m > n-m)
            m = n-m;
        ll a = 1,b = 1;
        while(m){
            a = (a*n)%mod;
            b = (b*m)%mod;
            m--;
            n--;
        }
        return a*quick_mod(b,mod-2,mod)%mod;
    }
    
    ll Lucas(ll n,ll k,ll mod){
        if(k == 0)
            return 1;
        return getC(n%mod,k%mod,mod)*Lucas(n/mod,k/mod,mod)%mod;
    }
    
    int main(){
        int T;
        scanf("%d",&T);
        while(T--){
            ll n,m,mod;
            scanf("%lld%lld%lld",&n,&m,&mod);
            printf("%lld
    ",Lucas(n+m,m,mod));
        }
        return 0;
    }
    View Code
  • 相关阅读:
    使用pandas的get_dummies对类目型的特征因子化
    关于RandomForestRegressor,补全null数值
    关于train_test_split和cross_val_score交叉检验
    关于seaborn
    正态分布
    单下划线或双下划线的意义
    MFC中关于运行时类信息及动态创建对象的两个宏的意义(转)
    DPDK
    根据结构体成员地址得到结构体入口地址,内核代码
    多线程频繁写全局变量导致性能降低
  • 原文地址:https://www.cnblogs.com/superxuezhazha/p/5769622.html
Copyright © 2011-2022 走看看