zoukankan      html  css  js  c++  java
  • 使用线性回归识别手写阿拉伯数字mnist数据集

    学习了tensorflow的线性回归。

    首先是一个sklearn中makeregression数据集,对其进行线性回归训练的例子。来自腾讯云实验室

    import tensorflow as tf
    import numpy as np
    class linearRegressionModel:
        def __init__(self,x_dimen):
            self.x_dimen=x_dimen
            self._index_in_epoch=0
            self.constructModel()
            self.sess=tf.Session()
            self.sess.run(tf.global_variables_initializer())
        #权重初始化
        def weight_variable(self,shape):
            initial=tf.truncated_normal(shape,stddev=0.1)
            return tf.Variable(initial)
        #偏置项初始化
        def bais_variable(self,shape):
            initial=tf.constant(0.1,shape=shape)
            return tf.Variable(initial)
        #获取数据块,每次选100个样本,如果选完,则重新打乱
        def next_batch(self,batch_size):
            start=self._index_in_epoch
            self._index_in_epoch+=batch_size
            if self._index_in_epoch>self._num_datas:
                perm=np.arange(self._num_datas)
                np.random.shuffle(perm)
                self._datas=self._datas[perm]
                self._labels=self._labels[perm]
                start=0
                self._index_in_epoch=batch_size
                assert batch_size<=self._num_datas
            end=self._index_in_epoch
            return self._datas[start:end],self._labels[start:end]
        def constructModel(self):
            self.x=tf.placeholder(tf.float32,[None,self.x_dimen])
            self.y=tf.placeholder(tf.float32,[None,1])
            self.w=self.weight_variable([self.x_dimen,1])
            self.b=self.bais_variable([1])
            self.y_prec=tf.nn.bias_add(tf.matmul(self.x,self.w),self.b)
            mse=tf.reduce_mean(tf.squared_difference(self.y_prec,self.y))
            l2=tf.reduce_mean(tf.square(self.w))
            #self.loss=mse+0.15*l2
            self.loss=mse
            self.train_step=tf.train.AdamOptimizer(0.1).minimize(self.loss)
        def train(self,x_train,y_train,x_test,y_test):
            self._datas=x_train
            self._labels=y_train
            self._num_datas=x_train.shape[0]
            for i in range(5000):
                batch=self.next_batch(100)
                self.sess.run(self.train_step,
                              feed_dict={
                                  self.x:batch[0],
                                  self.y:batch[1]
                              })
                if i%10==0:
                    train_loss=self.sess.run(self.loss,feed_dict={
                        self.x:batch[0],
                        self.y:batch[1]
                    })
                    print("setp %d,test_loss %f"%(i,train_loss))
        def predict_batch(self,arr,batchsize):
                for i in range(0,len(arr),batchsize):
                    yield arr[i:i+batchsize]
        def predict(self,x_predict):
            pred_list=[]
            for x_test_batch in self.predict_batch(x_predict,100):
                pred =self.sess.run(self.y_prec,{self.x:x_test_batch})
                pred_list.append(pred)
            return np.vstack(pred_list)
    View Code

    仿照这个代码,联系使用线性回归的方法对mnist进行训练。开始选择学习率为0.1,结果训练失败,调节学习率为0.01.正确率在0.91左右

    给出训练类:

    import tensorflow as tf
    import numpy as np
    class myLinearModel:
        def __init__(self,x_dimen):
            self.x_dimen=x_dimen
            self.epoch=0
            self._num_datas=0
            self.datas=None
            self.lables=None
            self.constructModel()
        def get_weiInit(self,shape):
            weiInit=tf.truncated_normal(shape)
            return tf.Variable(weiInit)
        def get_biasInit(self,shape):
            biasInit=tf.constant(0.1,shape=shape)
            return tf.Variable(biasInit)
        def constructModel(self):
            self.x = tf.placeholder(dtype=tf.float32,shape=[None,self.x_dimen])
            self.y=tf.placeholder(dtype=tf.float32,shape=[None,10])
            self.weight=self.get_weiInit([self.x_dimen,10])
            self.bias=self.get_biasInit([10])
            self.y_pre=tf.nn.softmax(tf.matmul(self.x,self.weight)+self.bias)
            self.correct_mat=tf.equal(tf.argmax(self.y_pre,1),tf.argmax(self.y,1))
            #self.loss=tf.reduce_mean(tf.squared_difference(self.y_pre,self.y))
            self.loss=-tf.reduce_sum(self.y*tf.log(self.y_pre))
            self.train_step = tf.train.GradientDescentOptimizer(0.01).minimize(self.loss)
            self.accuracy=tf.reduce_mean(tf.cast(self.correct_mat,"float"))
        def next_batch(self,batchsize):
            start=self.epoch
            self.epoch+=batchsize
            if self.epoch>self._num_datas:
                perm=np.arange(self._num_datas)
                np.random.shuffle(perm)
                self.datas=self.datas[perm,:]
                self.lables=self.lables[perm,:]
                start=0
                self.epoch=batchsize
            end=self.epoch
            return self.datas[start:end,:],self.lables[start:end,:]
        def train(self,x_train,y_train,x_test,y_test):
            self.datas=x_train
            self.lables=y_train
            self._num_datas=(self.lables.shape[0])
            with tf.Session() as sess:
                sess.run(tf.global_variables_initializer())
                for i in range(5000):
                    batch=self.next_batch(100)
                    sess.run(self.train_step,feed_dict={
                        self.x:batch[0],
                        self.y:batch[1]
                    })
                    if 1:
                        train_loss = sess.run(self.loss, feed_dict={
                            self.x: batch[0],
                            self.y: batch[1]
                        })
                        print("setp %d,test_loss %f" % (i, train_loss))
                        #print("y_pre",sess.run(self.y_pre,feed_dict={                        self.x: batch[0],
                        #    self.y: batch[1]}))
                        #print("*****************weight********************",sess.run(self.weight))
                print(sess.run(self.accuracy,feed_dict={self.x:x_test,self.y:y_test}))
    View Code

    然后是调用方法,包括了对这个mnist数据集的下载

    from myTensorflowLinearModle import myLinearModel as mlm
    import tensorflow.examples.tutorials.mnist.input_data as input_data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    
    if __name__=='__main__':
    
        x_train,x_test,y_train,y_test=mnist.train.images,mnist.test.images,mnist.train.labels,mnist.test.labels
        linear = mlm(len(x_train[1]))
        linear.train(x_train,y_train,x_test,y_test)

    下载方法来自tensorflow的官方文档中文版

  • 相关阅读:
    9.19题解
    9.18题解
    改码风
    找到了几个好的网站
    题目链接
    二分上机训练题解
    二分例题简单说明
    贪心上机训练题解
    贪心算法例题简单说明
    Johnson法则证明
  • 原文地址:https://www.cnblogs.com/superxuezhazha/p/9531783.html
Copyright © 2011-2022 走看看