zoukankan      html  css  js  c++  java
  • 使用卷积神经网络CNN训练识别mnist

    算的的上是自己搭建的第一个卷积神经网络。网络结构比较简单。

    输入为单通道的mnist数据集。它是一张28*28,包含784个特征值的图片

    我们第一层输入,使用5*5的卷积核进行卷积,输出32张特征图,然后使用2*2的池化核进行池化 输出14*14的图片

    第二层 使用5*5的卷积和进行卷积,输出64张特征图,然后使用2*2的池化核进行池化 输出7*7的图片

    第三层为全连接层 我们总结有 7*7*64 个输入,输出1024个节点 ,使用relu作为激活函数,增加一个keep_prob的dropout层

    第四层为输出层,我们接收1024个输入,输出长度为10的one-hot向量。使用softmax作为激活函数

    使用交叉熵作为损失函数

    网络模型代码:

    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    import argparse
    import sys
    import tempfile
    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    FLAGS = None
    def weight_variable(shape):
        init=tf.truncated_normal(shape=shape,stddev=0.1,mean=1.)
        return tf.Variable(init)
    def bias_variable(shape):
        init=tf.constant(0.1,shape=shape)
        return tf.Variable(init)
    def conv2d(x,w):
        return tf.nn.conv2d(x,w,[1,1,1,1],padding="SAME")
    def max_pool_2x2(x):
        return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
    
    def deepnn(x):
        with tf.name_scope('reshape'):
            x_image=tf.reshape(x,[-1,28,28,1])
        #第一层卷积和池化
        with tf.name_scope('conv1'):
            #输入为1张图片 卷积核为5*5 生成32个特征图
            w_conv1=weight_variable([5,5,1,32])
            b_conv1=bias_variable([32])
            h_conv1=tf.nn.relu(conv2d(x_image,w_conv1)+b_conv1)
        with tf.name_scope('pool1'):
            h_pool1=max_pool_2x2(h_conv1)
        #第二层卷积和池化
        with tf.name_scope("conv2"):
            #输入为32张特征图,卷积核为5*5 输出64张特征图
            w_conv2=weight_variable([5,5,32,64])
            b_conv2=bias_variable([64])
            h_conv2=tf.nn.relu(conv2d(h_pool1,w_conv2)+b_conv2)
        with tf.name_scope("pool2"):
            h_pool2=max_pool_2x2(h_conv2)
        #第一层全连接层,将特征图展开为特征向量,与1024个节点连接
        with tf.name_scope("fc1"):
            w_fc1=weight_variable([7*7*64,1024])
            b_fc1=bias_variable([1024])
            h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
            h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,w_fc1)+b_fc1)
        #dropout层,训练时随机让某些隐含层节点权重不工作
        with tf.name_scope("dropout1"):
            keep_prob=tf.placeholder(tf.float32)
            h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)
        #第二个全连接层,连接1024个节点,输出one-hot预测
        with tf.name_scope("fc2"):
            w_fc2=weight_variable([1024,10])
            b_fc2=bias_variable([10])
            h_fc2=tf.matmul(h_fc1_drop,w_fc2)+b_fc2
        return h_fc2,keep_prob
    View Code

    训练代码:

    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    import argparse
    import sys
    import tempfile
    
    from tensorflow.examples.tutorials.mnist import input_data
    
    import tensorflow as tf
    
    import mnist_model
    
    FLAGS = None
    def main(_):
      mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
      #设置输入变量
      x=tf.placeholder(dtype=tf.float32,shape=[None,784])
      #设置输出变量
      y_real=tf.placeholder(dtype=tf.float32,shape=[None,10])
      #实例化网络
      y_pre,keep_prob=mnist_model.deepnn(x)
      #设置损失函数
      with tf.name_scope("loss"):
          cross_entropy=tf.nn.softmax_cross_entropy_with_logits(logits=y_pre,labels=y_real)
          loss=tf.reduce_mean(cross_entropy)
      #设置优化器
      with tf.name_scope("adam_optimizer"):
          train_step=tf.train.AdamOptimizer(1e-4).minimize(loss)
      #计算正确率:
      with tf.name_scope("accuracy"):
          correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(y_real, 1))
          correct_prediction = tf.cast(correct_prediction, tf.float32)
      accuracy = tf.reduce_mean(correct_prediction)
      #将神经网络图模型保存
      graph_location=tempfile.mkdtemp()
      print('saving graph to %s'%graph_location)
      train_writer=tf.summary.FileWriter(graph_location)
      train_writer.add_graph(tf.get_default_graph())
      #将训练的网络保存下来
      saver=tf.train.Saver()
      with tf.Session() as sess:
          sess.run(tf.global_variables_initializer())
          for i in range(5000):
              batch=mnist.train.next_batch(50)
              if i%100==0:
                  train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_real: batch[1], keep_prob: 1.0})
                  print('step %d, training accuracy %g' % (i, train_accuracy))
              sess.run(train_step,feed_dict={x: batch[0], y_real: batch[1], keep_prob: 0.5})
          #在测试集上进行测试
          test_accuracy = 0
          for i in range(200):
              batch = mnist.test.next_batch(50)
              test_accuracy += accuracy.eval(feed_dict={x: batch[0], y_real: batch[1], keep_prob: 1.0}) / 200;
    
          print('test accuracy %g' % test_accuracy)
          save_path = saver.save(sess, "mnist_cnn_model.ckpt")
    if __name__ == '__main__':
      parser = argparse.ArgumentParser()
      parser.add_argument('--data_dir', type=str,
                          default='./',
                          help='Directory for storing input data')
      FLAGS, unparsed = parser.parse_known_args()
      tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
    View Code

    部分训练结果:

    step 3600, training accuracy 0.98
    step 3700, training accuracy 0.98
    step 3800, training accuracy 0.96
    step 3900, training accuracy 1
    step 4000, training accuracy 0.98
    step 4100, training accuracy 0.96
    step 4200, training accuracy 1
    step 4300, training accuracy 1
    step 4400, training accuracy 0.98
    step 4500, training accuracy 0.98
    step 4600, training accuracy 0.98
    step 4700, training accuracy 1
    step 4800, training accuracy 0.98
    step 4900, training accuracy 1
    test accuracy 0.9862
  • 相关阅读:
    软件工程实践第三次作业——原型设计
    第三次作业补充
    软件工程实践之词频统计
    软工实践第一次作业
    B*树索引结构和内部管理(转)
    MySQL索引背后的数据结构及算法原理(转)
    Java编程军规
    差分隐私学习三:实现机制
    万能头文件#include <bits/stdc++.h>
    微信小程序-flex布局中align-items和align-self区别
  • 原文地址:https://www.cnblogs.com/superxuezhazha/p/9534583.html
Copyright © 2011-2022 走看看