Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length 5
.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
将每差一个字母的两个字符串连起来可以构成图,找图上给定起点终点的最短距离,用BFS
注意unordered_set,map, queue的使用
class Solution { public: int ladderLength(string start, string end, std::unordered_set<string> &dict) { // Start typing your C/C++ solution below // DO NOT write int main() function queue<string> q; map<string,int> m; q.push(start); m[start]=0; while(q.size()!=0){ string top=q.front(); q.pop(); string s=top; for(int i=0;i<top.length();i++){ char c=top[i]; for(int j='a';j<c;j++){ s[i]=j; if(s==end)return m[top]+2; if(dict.find(s)!=dict.end()&&m.find(s)==m.end()){ m[s]=m[top]+1; q.push(s); } } for(int j=c+1;j<'z';j++){ s[i]=j; if(s==end)return m[top]+2; if(dict.find(s)!=dict.end()&&m.find(s)==m.end()){ m[s]=m[top]+1; q.push(s); } } s[i]=c; } } return 0; } };