zoukankan      html  css  js  c++  java
  • 模式识别概念梳理

    贝叶斯决策论,作为解决模式识别问题的一种基本的统计途径,其假设决策的问题可以用概率的形式表示,并且假设所有有关的概率结构均已知。

    根据贝叶斯公式,可以知道后验概率可以表示成似然函数和先验概率的乘积形式(证据对于每个类别都是相通的,所以在决策过程中可以忽略)。贝叶斯决策一般是用于分类场景,我们根据每个类别对应的后验概率对样本作出分到哪一类的决策,这件事的前提是我们已知了数据的分布形式以及相关参数。

    而在大多数情况下,我们在做贝叶斯决策的时候,拿到的数据只是一个总体分布下的采样样本,我们需要根据样本的分布来估计总体的分布,从而代入贝叶斯决策那一套框架中进行决策,这种情况我们称之为参数估计。我们一般会假设总体分布的形式以及参数的数目已知。根据我们对参数的假设,又将参数估计分为最大似然估计和贝叶斯估计。在最大似然估计中,我们把待估参数看作是确定性的量,只是取值未知,而贝叶斯估计则是将待估参数看作随机变量,估计其后验分布。

    在上述参数估计的时候,我们给出的一个假设是已知总体分布的形式,而在大多数模式识别问题中,我们给出的总体分布的形式往往不符合真实分布,这样我们再做决策则会出现比较大概率的误分类。因此,我们需要讨论非参数方法。比如,从训练样本中直接估计出概率密度函数(p(mathbf x|omega_j))或者是直接估计出后验概率(P(omega_j|mathbf x))。还有更为常见的方法,是直接假设判别函数参数形式已知,用训练的方法来估计判别函数的参数值,在此过程中我们不需要知道有关的概率密度函数的确切参数形式。


    参考

    Pattern Classification. Richard O.Duda

  • 相关阅读:
    给Array本地对象增加一个原型方法,它用于删除数组条目中重复的条目(可能有多个),返回值是一个包含被删除的重复条目的新数组以及删除了重复条目的原数组。
    mysql批量替换某个字段的值!
    LInux常用命令
    盒模型布局
    box-sizing -- 盒模型
    vue中使用svg字体图标
    字体图标
    在线字体
    Java QQ邮箱发送邮件
    Java 对全局用户是否登录验证
  • 原文地址:https://www.cnblogs.com/surfzjy/p/8322490.html
Copyright © 2011-2022 走看看