zoukankan      html  css  js  c++  java
  • ZROI 19.08.10模拟赛

    传送门

    写在前面:为了保护正睿题目版权,这里不放题面,只写题解。


    • A

    (20pts:)

    枚举操作序列然后暴力跑,复杂度(O(6^n))

    ([50,80]pts:)

    枚举改成dfs,每层操作后还原。复杂度(O(3^n))

    全0或全1可以直接返回。

    写法优秀可以过(80pts)

    (100pts:)

    类似非递归fft的写法,bitrev后可以位运算优化。

    最下面四层可以预处理,复杂度(O(3^{n-4}))

    然后疯狂卡常就完事了(

    然而由于swk人菜常数大,明明所有剪枝都加上了仍然挂掉了qwq

    破案了,原来swk太菜了,在递归的每一层都重构了一遍结构体,结构体里还用了vector,于是多了(12)倍常数,就死掉了。


    • B

    (80pts:)

    枚举最小差,设为(d)

    统计最小差大于等于 (d) 的集合最大差之和,发现对于一个最小差为(x)的集合,它的最大差刚好被统计了(x)次。

    直接dp,设(f_i)表示前(i)个元素,且第(i)个元素必选的最大差之和。转移时需要一堆前缀和。我代码写的特别诡异

    (100pts:)

    仍然枚举(d),对每个(d)枚举集合元素个数(x),发现(dxleq n),所以枚举复杂度为(O(nlog n))

    然后随便组合数一下就可以了。

    发现集合中的最大值和最小值是对称的,可以分开算。

    考虑枚举最小值为(c),则方案数为((^{n-c-x(d-1)}_{~~~~~~~~x-1}))。即选中(x)个元素,在它们后面附带(d-1)个额外的空格,其中位于位置(c)的元素必须被选中,且前面不能有任何被选中的元素,可以直接把这个元素删掉。

    (a=n-x(d-1),b=x-1),则总贡献为(sum_{c=1}^{a-b} ccdot (^{a-c}_{~~~b})=sum_{c=b}^a (a-c)cdot (^c_b)=sum_{c=b}^a (a+1)cdot(^c_b)-(c+1)cdot (^c_b))

    将后半部分拆开,得到((c+1)cdot (^c_b)=frac{(c+1)c!}{b!(c-b)!}=(b+1)frac{(c+1)!}{(b+1)!(c-b)!}=(b+1)cdot(^{c+1}_{b+1}))

    代回上式,得到(sum_{c=b}^a (a+1)cdot(^c_b)-(b+1)cdot (^{c+1}_{b+1})=(a+1)cdot(^{c+1}_{b+1})-(b+1)cdot(^{c+2}_{b+2}))。可以(O(1))计算。


    • C

    swk完全不会做找观察题所以光荣爆零了。然而大家都切了这道题,所以swk菜死了。

    一个很重要的结论就是每个点只会往上走。

    感性理解下就是越往上边就越稀疏。

    于是每个点只有(O(log))个点与它相关,建出边直接跑就可以了。

    上面的写法比较麻烦。好写一点的方法是,两个点必然在lca附近相遇。对每个点可以算出向上不经过桥最近的祖先,贪心地找最高的祖先即可。需要特判两个点在祖先的两侧相遇的情况。

  • 相关阅读:
    (C#) 设定时间格式
    (WPF) MVVM: 动态添加控件及绑定。
    (WPF) MVVM: DataGrid Binding
    (WPF) MVVM: ComboBox Binding, XML 序列化
    (C#) 判断相等?
    ASP.NET MVC过滤器中权限过滤器ValidateAntiForgeryToken的用法(Post-Only)
    根据2个经纬度点,计算这2个经纬度点之间的距离
    ASP.NET导出Excel(利用NPOI和EPPlus库,无需安装Office)
    nopcommerce 二次开发
    SQL效率低下原因主要有
  • 原文地址:https://www.cnblogs.com/suwakow/p/11375089.html
Copyright © 2011-2022 走看看