一般的平衡树都是基于旋转来保证树的平衡,也就是让树不会太高,但替罪羊树是用暴力重构来保证
具体的,就是插入时如果一个节点的左或右子树,节点数大于根的节点数乘一个平衡因子 alpha,那么就重构以这个节点为根的整个子树
inline int isbad(tr *tree){
return tree->ls->cnt>alpha*tree->cnt+5||tree->rs->cnt>alpha*tree->cnt+5;
}
这个加五,是为了防止在子树较小的时候造成多次重构
但是,如果某一次插入时根节点到插入节点的路径上,有好多节点都满足这个条件,那会造成多次重构
这显然是十分浪费的,所以用一个 badtag
记录下最靠上的一个满足条件的点,然后只重构一次
重构过程就是先来一遍 dfs(中序遍历),把所以节点存在一个指针数组里,然后指针数组里节点的值肯定是递增的,那么重构的递归里,就把当前下标范围 ((l,r)) 的 (mid) 作为节点,然后递归的重构 ((l,mid-1),(mid+1,r))
至于删除,是惰性删除,给要删的节点打一个删除标记,然后重构的时候把它删掉
所以保存的大小一个是确实存在的节点数(不包含已经删了的),和节点总数(包含已经删了的)。显然, isbad
比较的是节点总数,因为节点总数反映的才是子树的重量(或者说高度)
剩余的就和普通的二叉搜索树差不多了,注意如果有多个相同的值,一个节点只代表一个
可以说代码是非常好理解
https://www.luogu.com.cn/problem/P6136
https://www.luogu.com.cn/problem/P3369
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<map>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
register int x=0;register int y=1;
register char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
#define alpha 0.7
struct tr{
tr *ls,*rs;
int val,cnt,size;//size:num of not deleted,cnt:all
int deleted;
}*null,*root,*nodes[100005],**badtag;
int node_num;
inline int isbad(tr *tree){
return tree->ls->cnt>alpha*tree->cnt+5||tree->rs->cnt>alpha*tree->cnt+5;
}
void dfs(tr *tree){
if(tree==null) return;
dfs(tree->ls);
if(!tree->deleted) nodes[++node_num]=tree;
dfs(tree->rs);
if(tree->deleted) delete tree;
}
tr *build(int l,int r){
if(l>r) return null;
if(l==r){
nodes[l]->ls=nodes[l]->rs=null;
nodes[l]->cnt=nodes[l]->size=1;
return nodes[l];
}
int mid=(l+r)>>1;
tr *tree=nodes[mid];
tree->ls=build(l,mid-1);tree->rs=build(mid+1,r);
tree->cnt=tree->size=1+tree->ls->size+tree->rs->size;
return tree;
}
inline void rebuild(tr *&tree){
node_num=0;
dfs(tree);
// std::printf("size : %d
",node_num-1);
tree=build(1,node_num);
}
void insert(tr *&tree,int x){
if(tree==null){
tree=new tr;
tree->ls=tree->rs=null;
tree->deleted=0;tree->val=x;
tree->size=tree->cnt=1;
return;
}
tree->size++;tree->cnt++;
if(x>tree->val) insert(tree->rs,x);
else insert(tree->ls,x);
if(isbad(tree)) badtag=&tree;
}
inline void insert_(tr *&tree,int x){
badtag=&null;
insert(tree,x);
if(badtag!=&null) rebuild(*badtag);
}
inline int rank(tr *tree,int x){
reg int ans=1;
while(tree!=null){
if(x<=tree->val) tree=tree->ls;
else{
ans+=tree->ls->size+!tree->deleted;
tree=tree->rs;
}
}
return ans;
}
inline int kth(tr *tree,int rk){
while(tree!=null){
if(!tree->deleted&&tree->ls->size+1==rk) return tree->val;
if(rk<=tree->ls->size) tree=tree->ls;
else{
rk-=tree->ls->size+!tree->deleted;
tree=tree->rs;
}
}
}
void erase(tr *tree,int rk){
if(!tree->deleted&&rk==tree->ls->size+1){
tree->deleted=1;
tree->size--;
return;
}
tree->size--;
if(rk<=tree->ls->size+!tree->deleted) erase(tree->ls,rk);
else erase(tree->rs,rk-tree->ls->size-!tree->deleted);
}
int main(){
int n=read();
null=new tr;
null->ls=null->rs=NULL;
null->deleted=null->cnt=null->size=null->val=0;
root=null;
reg int op,x;
while(n--){
op=read();x=read();
if(op==1) insert_(root,x);
else if(op==2) erase(root,rank(root,x));
else if(op==3) printf("%d
",rank(root,x));
else if(op==4) printf("%d
",kth(root,x));
else if(op==5) printf("%d
",kth(root,rank(root,x)-1));
else printf("%d
",kth(root,rank(root,x+1)));
}
return 0;
}