zoukankan      html  css  js  c++  java
  • hdu2888 二维RMQ

    Check Corners

    Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2513    Accepted Submission(s): 904


    Problem Description
    Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 <= i <= m, 1 <= j <= n ). Now he selects some sub-matrices, hoping to find the maximum number. Then he finds that there may be more than one maximum number, he also wants to know the number of them. But soon he find that it is too complex, so he changes his mind, he just want to know whether there is a maximum at the four corners of the sub-matrix, he calls this “Check corners”. It’s a boring job when selecting too many sub-matrices, so he asks you for help. (For the “Check corners” part: If the sub-matrix has only one row or column just check the two endpoints. If the sub-matrix has only one entry just output “yes”.)
     

    Input
    There are multiple test cases. 

    For each test case, the first line contains two integers m, n (1 <= m, n <= 300), which is the size of the row and column of the matrix, respectively. The next m lines with n integers each gives the elements of the matrix which fit in non-negative 32-bit integer. 

    The next line contains a single integer Q (1 <= Q <= 1,000,000), the number of queries. The next Q lines give one query on each line, with four integers r1, c1, r2, c2 (1 <= r1 <= r2 <= m, 1 <= c1 <= c2 <= n), which are the indices of the upper-left corner and lower-right corner of the sub-matrix in question. 
     

    Output
    For each test case, print Q lines with two numbers on each line, the required maximum integer and the result of the “Check corners” using “yes” or “no”. Separate the two parts with a single space.
     

    Sample Input
    
    
    4 4 4 4 10 7 2 13 9 11 5 7 8 20 13 20 8 2 4 1 1 4 4 1 1 3 3 1 3 3 4 1 1 1 1
     

    Sample Output
    
    
    20 no 13 no 20 yes 4 yes
     
    求子矩阵内最大的值是多少。
    思路:
    二维RMQ处理。
    dp[row][col][i][j] 表示[row,row+2^i-1]x[col,col+2^j-1] 二维区间内的最小值
    =  max{dp[row][col][i][j-1],dp[row][col][i-1][j],dp[row][col+2^(j-1)][i][j-1],dp[row+2^(i-1)][col][i-1][j]}
     
    查询结果为
          max{dp[sx][sy][kx][ky],dp[sx][ey-2^ky+1][kx][ky],dp[ex-2^kx+1][sy][kx][ky],dp[ex-2^kx+1][ey-2^ky+1][kx][ky]}
     
    #include<set>
    #include<map>
    #include<queue>
    #include<stack>
    #include<cmath>
    #include<string>
    #include<vector>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define INF 1000000001
    #define MOD 1000000007
    #define ll long long
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    //#define pi acos(-1.0)
    using namespace std;
    const int MAXN = 301;
    int a[MAXN][MAXN],n,m,dp[MAXN][MAXN][9][9];
    void Init()
    {
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= m; j++){
                dp[i][j][0][0] = a[i][j];
            }
        }
        for(int pi = 0; pi < 10; pi++){
            for(int pj = 0; pj < 10; pj++){
                if(pi == 0 && pj == 0)continue;
                for(int i = 1; i <= n; i++){
                    for(int j = 1; j <= m; j++){
                        if(i + (1 << pi) - 1 > n || j + (1 << pj) - 1 > m)continue;
                        if(pi == 0){
                            dp[i][j][pi][pj] = max(dp[i][j][pi][pj-1],dp[i][j+(1<<(pj-1))][pi][pj-1]);
                        }
                        else {
                            dp[i][j][pi][pj] = max(dp[i][j][pi-1][pj],dp[i+(1<<(pi-1))][j][pi-1][pj]);
                        }
                    }
                }
            }
        }
    }
    void getans(int x1,int y1,int x2,int y2)
    {
        int kx,ky;
        kx = (int)(log((double)(x2 - x1)) / log(2.0));
        ky = (int)(log((double)(y2 - y1)) / log(2.0));
        int ans = -INF;
        ans = max(ans,dp[x1][y1][kx][ky]);
        ans = max(ans,dp[x2 - (1 << kx) + 1][y1][kx][ky]);
        ans = max(ans,dp[x1][y2 - (1 << ky) + 1][kx][ky]);
        ans = max(ans,dp[x2 - (1 << kx) + 1][y2 - (1 << ky) + 1][kx][ky]);
        printf("%d ",ans);
        if(a[x1][y1] == ans || a[x1][y2] == ans || a[x2][y1] == ans || a[x2][y2] == ans)printf("yes
    ");
        else printf("no
    ");
    }
    void solve()
    {
        int q;
        scanf("%d",&q);
        int x1,y1,x2,y2;
        while(q--){
            scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
            getans(x1,y1,x2,y2);
        }
    }
    int main()
    {
        while(~scanf("%d%d",&n,&m)){
            for(int i = 1; i <= n; i++){
                for(int j = 1; j <= m; j++){
                    scanf("%d",&a[i][j]);
                }
            }
            Init();
            solve();
        }
        return 0;
    }
  • 相关阅读:
    [转]权限树中Checkbox的操作[Asp.Net2.0]
    [转]IE点击链接没有反应或打开新窗口出现一个空白框(地址栏空白)的解决方法
    [引]VS2005 之 Visual Basic 编程语言介绍
    [文摘20070816]家(周国平)
    Linux 下zip包的压缩与解压
    SOSO发布国内首家高清街景地图 引领地图换代
    VC 获取当前工作目录和执行目录的一些方法
    设置vim 默认显示行号
    利用脚本将文字插入到图片或进行多个图片拼接
    ImageMagick操作合并图像
  • 原文地址:https://www.cnblogs.com/sweat123/p/5539646.html
Copyright © 2011-2022 走看看