zoukankan      html  css  js  c++  java
  • poj2186 强连通缩点

    Popular Cows
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 29773   Accepted: 12080

    Description

    Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is 
    popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow. 

    Input

    * Line 1: Two space-separated integers, N and M 

    * Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular. 

    Output

    * Line 1: A single integer that is the number of cows who are considered popular by every other cow. 

    Sample Input

    3 3
    1 2
    2 1
    2 3
    

    Sample Output

    1

    题意:

    有n头牛,每头牛之间有仰慕关系。有m个关系对(A,B)表示A仰慕B,并且具有传递性。 问被所有除了本身以外的牛仰慕的牛有几个。

    思路:

    由于强连通中的牛都是相互仰慕的,所以可以先缩点。然后判断出度为0的个数,如果出度为0,说明这个牛肯定是被人仰慕的。如果出度为0

    的点个数大于1,说明是不可能的。因为着几个点之间不会有关系。 如果出度为1的点个数只有1个,说明存在这样的牛,并且就是这个缩点后该带点表示的个数。

    /*
     * Author:  sweat123
     * Created Time:  2016/6/25 13:45:46
     * File Name: main.cpp
     */
    #include<set>
    #include<map>
    #include<queue>
    #include<stack>
    #include<cmath>
    #include<string>
    #include<vector>
    #include<cstdio>
    #include<time.h>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define INF 1<<30
    #define MOD 1000000007
    #define ll long long
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define pi acos(-1.0)
    using namespace std;
    const int MAXN = 10010;
    struct node{
        int from;
        int to;
        int next;  
    }edge[MAXN*10];
    int pre[MAXN],vis[MAXN],dfn[MAXN],low[MAXN],n,m,ind;
    int f[MAXN],siz[MAXN],num,dep,out[MAXN];
    stack<int>s;
    void add(int x,int y){
        edge[ind].from = x;
        edge[ind].to = y;
        edge[ind].next = pre[x];
        pre[x] = ind ++;   
    }
    void dfs(int rt){
        dfn[rt] = low[rt] = ++dep;
        vis[rt] = 1;
        s.push(rt);
        for(int i = pre[rt]; i != -1; i = edge[i].next){
            int t = edge[i].to;
            if(!dfn[t]){
                dfs(t);
                low[rt] = min(low[rt],low[t]);   
            } else if(vis[t]){
                low[rt] = min(low[rt],dfn[t]);   
            }
        }  
        if(low[rt] == dfn[rt]){
            ++num;
            while(!s.empty()){
                int  tp = s.top();
                s.pop();
                vis[tp] = 0;
                f[tp] = num;
                siz[num] ++;
                if(tp == rt)break;
            }   
        }
    }
    void setcc(){
        num = 0;
        dep = 0;
        memset(out,0,sizeof(out));
        memset(dfn,0,sizeof(dfn));
        memset(low,0,sizeof(low)); 
        for(int i = 1; i <= n; i++){
            if(!dfn[i]){
                dfs(i);   
            }
        }
        memset(pre,-1,sizeof(pre));
        int ret = ind;
        for(int i = 0; i < ret; i++){
            int x = f[edge[i].from];
            int y = f[edge[i].to];
            if(x == y)continue;
            add(x,y);
            out[x] ++;
        }
        int ans = 0;
        int flag = 0;
        for(int i = 1; i <= num; i++){
            if(out[i] == 0){
                if(flag == 1){flag = 2;break;}
                flag = 1;
                ans += siz[i];
            }   
        }
        if(flag == 2){
            ans = 0;   
        }
        printf("%d
    ",ans);
    }
    int main(){
        while(~scanf("%d%d",&n,&m)){
            ind = 0;
            memset(pre,-1,sizeof(pre));
            while(!s.empty())s.pop();
            memset(f,-1,sizeof(f));
            memset(siz,0,sizeof(siz));
            for(int i = 1; i <= m; i++){
                int x,y;
                scanf("%d%d",&x,&y);
                add(x,y);
            }   
            setcc();
        }
        return 0;
    }
  • 相关阅读:
    WCF webHttpBinding协议上传接收文件
    mysql 用存储过程和函数分别模拟序列
    angular 下载文件
    Firebird 备份与恢复
    sql 等额本息
    Firebird 手动安装 Legacy_Auth 登陆认证
    Firebird 获取用户表及字段
    Firebird shadow
    Linux的安装(虚拟机环境)与基础配置
    第 3 章 数据库系统 3.5备份与恢复
  • 原文地址:https://www.cnblogs.com/sweat123/p/5616271.html
Copyright © 2011-2022 走看看