zoukankan      html  css  js  c++  java
  • 推荐!国外程序员整理的机器学习资源大全

    本列表选编了一些机器学习领域牛B的框架、库以及软件(按编程语言排序)。

    C++

    计算机视觉

    • CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库

    • OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统。

    通用机器学习

    Closure

    通用机器学习

    Go

    自然语言处理

    • go-porterstemmer—一个Porter词干提取算法的原生Go语言净室实现

    • paicehusk—Paice/Husk词干提取算法的Go语言实现

    • snowball—Go语言版的Snowball词干提取器

    通用机器学习

    • Go Learn— Go语言机器学习库

    • go-pr —Go语言机器学习包.

    • bayesian—Go语言朴素贝叶斯分类库。

    • go-galib—Go语言遗传算法库。

    数据分析/数据可视化

    • go-graph—Go语言图形库。

    • SVGo—Go语言的SVG生成库。

    Java

    自然语言处理

    • CoreNLP—斯坦福大学的CoreNLP提供一系列的自然语言处理工具,输入原始英语文本,可以给出单词的基本形式(下面Stanford开头的几个工具都包含其中)。

    • Stanford Parser—一个自然语言解析器。

    • Stanford POS Tagger —一个词性分类器。

    • Stanford Name Entity Recognizer—Java实现的名称识别器

    • Stanford Word Segmenter—分词器,很多NLP工作中都要用到的标准预处理步骤。

    • Tregex, Tsurgeon and Semgrex —用来在树状数据结构中进行模式匹配,基于树关系以及节点匹配的正则表达式(名字是“tree regular expressions”的缩写)。

    • Stanford Phrasal:最新的基于统计短语的机器翻译系统, java编写

    • Stanford Tokens Regex—用以定义文本模式的框架。

    • Stanford Temporal Tagger—SUTime是一个识别并标准化时间表达式的库。

    • Stanford SPIED—在种子集上使用模式,以迭代方式从无标签文本中学习字符实体

    • Stanford Topic Modeling Toolbox —为社会科学家及其他希望分析数据集的人员提供的主题建模工具。

    • Twitter Text Java—Java实现的推特文本处理库

    • MALLET -—基于Java的统计自然语言处理、文档分类、聚类、主题建模、信息提取以及其他机器学习文本应用包。

    • OpenNLP—处理自然语言文本的机器学习工具包。

    • LingPipe —使用计算机语言学处理文本的工具包。

    通用机器学习

    • MLlib in Apache Spark—Spark中的分布式机器学习程序库

    • Mahout —分布式的机器学习库

    • Stanford Classifier —斯坦福大学的分类器

    • Weka—Weka是数据挖掘方面的机器学习算法集。

    • ORYX—提供一个简单的大规模实时机器学习/预测分析基础架构。

    数据分析/数据可视化

    • Hadoop—大数据分析平台

    • Spark—快速通用的大规模数据处理引擎。

    • Impala —为Hadoop实现实时查询

    Javascript

    自然语言处理

    • Twitter-text-js —JavaScript实现的推特文本处理库

    • NLP.js —javascript及coffeescript编写的NLP工具

    • natural—Node下的通用NLP工具

    • Knwl.js—JS编写的自然语言处理器

    数据分析/数据可视化

    通用机器学习

    • Convnet.js—训练深度学习模型的JavaScript库。

    • Clustering.js—用JavaScript实现的聚类算法,供Node.js及浏览器使用。

    • Decision Trees—Node.js实现的决策树,使用ID3算法。

    • Node-fann —Node.js下的快速人工神经网络库。

    • Kmeans.js—k-means算法的简单Javascript实现,供Node.js及浏览器使用。

    • LDA.js —供Node.js用的LDA主题建模工具。

    • Learning.js—逻辑回归/c4.5决策树的JavaScript实现

    • Machine Learning—Node.js的机器学习库。

    • Node-SVM—Node.js的支持向量机

    • Brain —JavaScript实现的神经网络

    • Bayesian-Bandit —贝叶斯强盗算法的实现,供Node.js及浏览器使用。

    Julia

    通用机器学习

    • PGM—Julia实现的概率图模型框架。

    • DA—Julia实现的正则化判别分析包。

    • Regression—回归分析算法包(如线性回归和逻辑回归)。

    • Local Regression —局部回归,非常平滑!

    • Naive Bayes —朴素贝叶斯的简单Julia实现

    • Mixed Models —(统计)混合效应模型的Julia包

    • Simple MCMC —Julia实现的基本mcmc采样器

    • Distance—Julia实现的距离评估模块

    • Decision Tree —决策树分类器及回归分析器

    • Neural —Julia实现的神经网络

    • MCMC —Julia下的MCMC工具

    • GLM —Julia写的广义线性模型包

    • Online Learning

    • GLMNet —GMLNet的Julia包装版,适合套索/弹性网模型。

    • Clustering—数据聚类的基本函数:k-means, dp-means等。

    • SVM—Julia下的支持向量机。

    • Kernal Density—Julia下的核密度估计器

    • Dimensionality Reduction—降维算法

    • NMF —Julia下的非负矩阵分解包

    • ANN—Julia实现的神经网络

    自然语言处理

    数据分析/数据可视化

    杂项/演示文稿

    Lua

    通用机器学习

    • Torch7

      • cephes —Cephes数学函数库,包装成Torch可用形式。提供并包装了超过180个特殊的数学函数,由Stephen L. Moshier开发,是SciPy的核心,应用于很多场合。

      • graph —供Torch使用的图形包。

      • randomkit—从Numpy提取的随机数生成包,包装成Torch可用形式。

      • signal —Torch-7可用的信号处理工具包,可进行FFT, DCT, Hilbert, cepstrums, stft等变换。

      • nn —Torch可用的神经网络包。

      • nngraph —为nn库提供图形计算能力。

      • nnx—一个不稳定实验性的包,扩展Torch内置的nn库。

      • optim—Torch可用的优化算法库,包括 SGD, Adagrad, 共轭梯度算法, LBFGS, RProp等算法。

      • unsup—Torch下的非监督学习包。提供的模块与nn(LinearPsd, ConvPsd, AutoEncoder, …)及独立算法 (k-means, PCA)等兼容。

      • manifold—操作流形的包。

      • svm—Torch的支持向量机库。

      • lbfgs—将liblbfgs包装为FFI接口。

      • vowpalwabbit —老版的vowpalwabbit对torch的接口。

      • OpenGM—OpenGM是C++编写的图形建模及推断库,该binding可以用Lua以简单的方式描述图形,然后用OpenGM优化。

      • sphagetti —MichaelMathieu为torch7编写的稀疏线性模块。

      • LuaSHKit —将局部敏感哈希库SHKit包装成lua可用形式。

      • kernel smoothing —KNN、核权平均以及局部线性回归平滑器

      • cutorch—torch的CUDA后端实现

      • cunn —torch的CUDA神经网络实现。

      • imgraph—torch的图像/图形库,提供从图像创建图形、分割、建立树、又转化回图像的例程

      • videograph—torch的视频/图形库,提供从视频创建图形、分割、建立树、又转化回视频的例程

      • saliency —积分图像的代码和工具,用来从快速积分直方图中寻找兴趣点。

      • stitch —使用hugin拼合图像并将其生成视频序列。

      • sfm—运动场景束调整/结构包

      • fex —torch的特征提取包,提供SIFT和dSIFT模块。

      • OverFeat—当前最高水准的通用密度特征提取器。

    • Numeric Lua

    • Lunatic Python

    • SciLua

    • Lua – Numerical Algorithms

    • Lunum

    演示及脚本

    • Core torch7 demos repository.核心torch7演示程序库

      • 线性回归、逻辑回归

      • 人脸检测(训练和检测是独立的演示)

      • 基于mst的断词器

      • train-a-digit-classifier

      • train-autoencoder

      • optical flow demo

      • train-on-housenumbers

      • train-on-cifar

      • tracking with deep nets

      • kinect demo

      • 滤波可视化

      • saliency-networks

    • Training a Convnet for the Galaxy-Zoo Kaggle challenge(CUDA demo)

    • Music Tagging—torch7下的音乐标签脚本

    • torch-datasets 读取几个流行的数据集的脚本,包括:

      • BSR 500

      • CIFAR-10

      • COIL

      • Street View House Numbers

      • MNIST

      • NORB

    • Atari2600 —在Arcade Learning Environment模拟器中用静态帧生成数据集的脚本。

      Matlab

      计算机视觉

      • Contourlets —实现轮廓波变换及其使用函数的MATLAB源代码

      • Shearlets—剪切波变换的MATLAB源码

      • Curvelets—Curvelet变换的MATLAB源码(Curvelet变换是对小波变换向更高维的推广,用来在不同尺度角度表示图像。)

      • Bandlets—Bandlets变换的MATLAB源码

      自然语言处理

      • NLP —一个Matlab的NLP库

      通用机器学习

      数据分析/数据可视化

      • matlab_gbl—处理图像的Matlab包

      • gamic—图像算法纯Matlab高效实现,对MatlabBGL的mex函数是个补充。

      .NET

      计算机视觉

      • OpenCVDotNet —包装器,使.NET程序能使用OpenCV代码

      • Emgu CV—跨平台的包装器,能在Windows, Linus, Mac OS X, iOS, 和Android上编译。

      自然语言处理

      • Stanford.NLP for .NET —斯坦福大学NLP包在.NET上的完全移植,还可作为NuGet包进行预编译。

      通用机器学习

      • Accord.MachineLearning —支持向量机、决策树、朴素贝叶斯模型、K-means、高斯混合模型和机器学习应用的通用算法,例如:随机抽样一致性算法、交叉验证、网格搜索。这个包是Accord.NET框架的一部分。

      • Vulpes—F#语言实现的Deep belief和深度学习包,它在Alea.cuBase下利用CUDA GPU来执行。

      • Encog —先进的神经网络和机器学习框架,包括用来创建多种网络的类,也支持神经网络需要的数据规则化及处理的类。它的训练采用多线程弹性传播。它也能使用GPU加快处理时间。提供了图形化界面来帮助建模和训练神经网络。

      • Neural Network Designer —这是一个数据库管理系统和神经网络设计器。设计器用WPF开发,也是一个UI,你可以设计你的神经网络、查询网络、创建并配置聊天机器人,它能问问题,并从你的反馈中学习。这些机器人甚至可以从网络搜集信息用来输出,或是用来学习。

      数据分析/数据可视化

      • numl —numl这个机器学习库,目标就是简化预测和聚类的标准建模技术。

      • Math.NET Numerics— Math.NET项目的数值计算基础,着眼提供科学、工程以及日常数值计算的方法和算法。支持 Windows, Linux 和 Mac上的 .Net 4.0, .Net 3.5 和 Mono ,Silverlight 5, WindowsPhone/SL 8, WindowsPhone 8.1 以及装有 PCL Portable Profiles 47 及 344的Windows 8, 装有 Xamarin的Android/iOS 。

      • Sho — Sho是数据分析和科学计算的交互式环境,可以让你将脚本(IronPython语言)和编译的代码(.NET)无缝连接,以快速灵活的建立原型。这个环 境包括强大高效的库,如线性代数、数据可视化,可供任何.NET语言使用,还为快速开发提供了功能丰富的交互式shell。

      Python

      计算机视觉

      • SimpleCV—开源的计算机视觉框架,可以访问如OpenCV等高性能计算机视觉库。使用Python编写,可以在Mac、Windows以及Ubuntu上运行。

      自然语言处理

      • NLTK —一个领先的平台,用来编写处理人类语言数据的Python程序

      • Pattern—Python可用的web挖掘模块,包括自然语言处理、机器学习等工具。

      • TextBlob—为普通自然语言处理任务提供一致的API,以NLTK和Pattern为基础,并和两者都能很好兼容。

      • jieba—中文断词工具。

      • SnowNLP —中文文本处理库。

      • loso—另一个中文断词库。

      • genius —基于条件随机域的中文断词库。

      • nut —自然语言理解工具包。

      通用机器学习

      • Bayesian Methods for Hackers —Python语言概率规划的电子书

      • MLlib in Apache Spark—Spark下的分布式机器学习库。

      • scikit-learn—基于SciPy的机器学习模块

      • graphlab-create —包含多种机器学习模块的库(回归,聚类,推荐系统,图分析等),基于可以磁盘存储的DataFrame。

      • BigML—连接外部服务器的库。

      • pattern—Python的web挖掘模块

      • NuPIC—Numenta公司的智能计算平台。

      • Pylearn2—基于Theano的机器学习库。

      • hebel —Python编写的使用GPU加速的深度学习库。

      • gensim—主题建模工具。

      • PyBrain—另一个机器学习库。

      • Crab —可扩展的、快速推荐引擎。

      • python-recsys —Python实现的推荐系统。

      • thinking bayes—关于贝叶斯分析的书籍

      • Restricted Boltzmann Machines —Python实现的受限波尔兹曼机。[深度学习]。

      • Bolt —在线学习工具箱。

      • CoverTree —cover tree的Python实现,scipy.spatial.kdtree便捷的替代。

      • nilearn—Python实现的神经影像学机器学习库。

      • Shogun—机器学习工具箱。

      • Pyevolve —遗传算法框架。

      • Caffe —考虑了代码清洁、可读性及速度的深度学习框架

      • breze—深度及递归神经网络的程序库,基于Theano。

      数据分析/数据可视化

      • SciPy —基于Python的数学、科学、工程开源软件生态系统。

      • NumPy—Python科学计算基础包。

      • Numba —Python的低级虚拟机JIT编译器,Cython and NumPy的开发者编写,供科学计算使用

      • NetworkX —为复杂网络使用的高效软件。

      • Pandas—这个库提供了高性能、易用的数据结构及数据分析工具。

      • Open Mining—Python中的商业智能工具(Pandas web接口)。

      • PyMC —MCMC采样工具包。

      • zipline—Python的算法交易库。

      • PyDy—全名Python Dynamics,协助基于NumPy, SciPy, IPython以及 matplotlib的动态建模工作流。

      • SymPy —符号数学Python库。

      • statsmodels—Python的统计建模及计量经济学库。

      • astropy —Python天文学程序库,社区协作编写

      • matplotlib —Python的2D绘图库。

      • bokeh—Python的交互式Web绘图库。

      • plotly —Python and matplotlib的协作web绘图库。

      • vincent—将Python数据结构转换为Vega可视化语法。

      • d3py—Python的绘图库,基于D3.js。

      • ggplot —和R语言里的ggplot2提供同样的API。

      • Kartograph.py—Python中渲染SVG图的库,效果漂亮。

      • pygal—Python下的SVG图表生成器。

      • pycascading

      杂项脚本/iPython笔记/代码库

      Kaggle竞赛源代码

      Ruby

      自然语言处理

      • Treat—文本检索与注释工具包,Ruby上我见过的最全面的工具包。

      • Ruby Linguistics—这个框架可以用任何语言为Ruby对象构建语言学工具。包括一个语言无关的通用前端,一个将语言代码映射到语言名的模块,和一个含有很有英文语言工具的模块。

      • Stemmer—使得Ruby可用 libstemmer_c中的接口。

      • Ruby Wordnet —WordNet的Ruby接口库。

      • Raspel —aspell绑定到Ruby的接口

      • UEA Stemmer—UEALite Stemmer的Ruby移植版,供搜索和检索用的保守的词干分析器

      • Twitter-text-rb—该程序库可以将推特中的用户名、列表和话题标签自动连接并提取出来。

      通用机器学习

      数据分析/数据可视化

      Misc
      杂项

      R

      通用机器学习

      数据分析/数据可视化

      Scala

      自然语言处理

      • ScalaNLP—机器学习和数值计算库的套装

      • Breeze —Scala用的数值处理库

      • Chalk—自然语言处理库。

      • FACTORIE—可部署的概率建模工具包,用Scala实现的软件库。为用户提供简洁的语言来创建关系因素图,评估参数并进行推断。

      数据分析/数据可视化

      • MLlib in Apache Spark—Spark下的分布式机器学习库

      • Scalding —CAscading的Scala接口

      • Summing Bird—用Scalding 和 Storm进行Streaming MapReduce

      • Algebird —Scala的抽象代数工具

      • xerial —Scala的数据管理工具

      • simmer —化简你的数据,进行代数聚合的unix过滤器

      • PredictionIO —供软件开发者和数据工程师用的机器学习服务器。

      • BIDMat—支持大规模探索性数据分析的CPU和GPU加速矩阵库。

      通用机器学习

      • Conjecture—Scalding下可扩展的机器学习框架

      • brushfire—scalding下的决策树工具。

      • ganitha —基于scalding的机器学习程序库

      • adam—使用Apache Avro, Apache Spark 和 Parquet的基因组处理引擎,有专用的文件格式,Apache 2软件许可。

      • bioscala —Scala语言可用的生物信息学程序库

      • BIDMach—机器学习CPU和GPU加速库。

      原文链接: awesome-machine-learning   翻译: 伯乐在线 - toolate

      译文链接: http://blog.jobbole.com/73806/

  • 相关阅读:
    Github+Jekyll 搭建个人网站详细教程
    github发布博客
    如何在GitHub部署自己的个人网站
    VS2017git 提交提示错误 Git failed with a fatal error.
    CAD 二次开发----- 块
    Updates were rejected because the remote contains work that you do(gitee报错解决方案)
    关于错误CSC : error CS0006:未能找到元数据文件
    js 四舍五入
    spingboot 邮件模板发送;
    springboot 邮件
  • 原文地址:https://www.cnblogs.com/swordxia/p/3862176.html
Copyright © 2011-2022 走看看