zoukankan      html  css  js  c++  java
  • [POJ] 3264 Balanced Lineup [线段树]

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 34306   Accepted: 16137
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

     
    题解:典型的RMQ问题。线段树的应用。
     
    代码:
      1 #include<stdio.h>
      2 #include<string.h>
      3 #include<math.h>
      4 #include<ctype.h>
      5 #include<stdlib.h>
      6 #include<stdbool.h>
      7 
      8 #define rep(i,a,b)      for(i=(a);i<=(b);i++)
      9 #define clr(x,y)        memset(x,y,sizeof(x))
     10 #define sqr(x)          (x*x)
     11 #define LL              long long
     12 
     13 const int INF=0xffffff0;
     14    
     15 struct {
     16     int L,R;
     17     int minV,maxV;
     18 } tree[800010];
     19     
     20 int i,j,n,q,minV,maxV;
     21 
     22 int min(int a, int b)
     23 {
     24     if(a<b) return a;
     25     return b;
     26 }
     27 
     28 int max(int a,int b)
     29 {
     30     if(a>b) return a;
     31     return b;
     32 }
     33 
     34 void BuildTree(int root,int L,int R)
     35 {
     36     tree[root].L=L;
     37     tree[root].R=R;
     38     tree[root].maxV=-INF;
     39     tree[root].minV=INF;
     40     
     41     if(L!=R) {
     42         BuildTree(2*root,L,(L+R)/2);
     43         BuildTree(2*root+1,(L+R)/2+1,R);
     44     }
     45     
     46 }
     47 
     48 void Insert(int root,int i,int v)
     49 {
     50     int mid;
     51 
     52     if(tree[root].L==tree[root].R) {
     53         tree[root].maxV=tree[root].minV=v;
     54         return ;
     55     }
     56     
     57     tree[root].minV=min(tree[root].minV,v);
     58     tree[root].maxV=max(tree[root].maxV,v);
     59     
     60     mid=(tree[root].L+tree[root].R)/2;
     61     if(i<=mid) 
     62         Insert(2*root,i,v);
     63     else
     64         Insert(2*root+1,i,v);
     65     
     66 }
     67 
     68 void Query(int root,int s,int e)
     69 {
     70     int mid;
     71     
     72     if(tree[root].minV>=minV && tree[root].maxV<=maxV) return ;
     73     if(tree[root].L==s  &&  tree[root].R==e) {
     74         minV=min(minV,tree[root].minV);
     75         maxV=max(maxV,tree[root].maxV);
     76         return ;
     77     }
     78     
     79     mid=(tree[root].L+tree[root].R)/2;
     80     
     81     if(e<=mid) 
     82         Query(2*root,s,e);
     83     else if(s>mid)
     84         Query(2*root+1,s,e);
     85     else {
     86             Query(2*root,s,mid);
     87             Query(2*root+1,mid+1,e);
     88     } 
     89     
     90 }
     91 
     92 
     93 int main()
     94 {
     95     int i,x,y;
     96     
     97     scanf("%d%d",&n,&q);
     98     BuildTree(1,1,n);
     99     rep(i,1,n) {
    100         scanf("%d",&x);
    101         Insert(1,i,x);
    102     }
    103     
    104     while(q--) {
    105         scanf("%d%d",&x,&y);
    106         minV=INF;
    107         maxV=-INF;
    108         Query(1,x,y);
    109         printf("%d
    ",maxV-minV);
    110     }
    111     
    112     return 0;
    113 }
    114 
    115     
  • 相关阅读:
    2.1求二进制数中1的个数
    SQL学习笔记八:SQL Server陷阱
    SQL学习笔记之三:系统表syscommnets
    SQL学习笔记之二:QUOTENAME函数
    SQL学习笔记五:脚本创建角色、用户以及相关操作
    输入表名生成插入、更新存储过程和调用该存储过程的字符串
    没有注意过的count(0),count(1),count(*),count(列名)
    清除开始文档批处理
    SQL学习笔记七:利用脚本附加数据库
    SQL学习笔记六:关于全备/差异/日志备份的恢复
  • 原文地址:https://www.cnblogs.com/sxiszero/p/3916558.html
Copyright © 2011-2022 走看看