zoukankan      html  css  js  c++  java
  • 二维计算几何基础题目泛做(SYX第一轮)

    题目1: POJ 2318 TOYS

    题目大意:

    给一个有n个挡板的盒子,从左到右空格编号为0...n。有好多玩具,问每个玩具在哪个空格里面。

    算法讨论:

    直接叉积判断就可以。注意在盒子的边界上面也算在盒子里面。

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <cstdlib>
     4 #include <iostream>
     5 #include <algorithm>
     6 #include <cmath>
     7 
     8 using namespace std;
     9 
    10 const int M = 5000 + 5;
    11 typedef long long ll;
    12 
    13 int n, m, a, b, c, d;
    14 int vi[M], tim = 0, num[M];
    15 
    16 struct Line {
    17   int zx, zy, yx, yy;
    18 }l[M];
    19 
    20 struct Point {
    21   int x, y;
    22   bool operator < (const Point &h) const {
    23     if(h.x == x) return y < h.y;
    24     return x < h.x;
    25   }
    26 }p[M];
    27 
    28 ll cross(int i, int j) {
    29   return 1LL * (l[i].zx - p[j].x) * (l[i].yy - p[j].y) - 1LL * (l[i].yx - p[j].x) * (l[i].zy - p[j].y);
    30 }
    31 #define ONLINE_JUDGE
    32 
    33 int main() {
    34 #ifndef ONLINE_JUDGE
    35   freopen("t.txt", "r", stdin);
    36   freopen("t.out", "w", stdout);
    37 #endif
    38   
    39   int u, v;
    40   
    41   while(scanf("%d", &n) && n) {
    42     scanf("%d%d%d%d%d", &m, &a, &b, &c, &d);
    43     ++ tim;
    44     memset(num, 0, sizeof num);
    45     for(int i = 1; i <= n; ++ i) {
    46       scanf("%d%d", &u, &v);
    47       l[i].zx = u; l[i].zy = b;
    48       l[i].yx = v; l[i].yy = d;
    49     }
    50     l[0].zx = l[0].yx = a;
    51     l[0].zy = b; l[0].yy = d;
    52     l[n + 1].zx = l[n + 1].yx = c;
    53     l[n + 1].zy = b; l[n + 1].yy = d;
    54     for(int i = 1; i <= m; ++ i) {
    55       scanf("%d%d", &p[i].x, &p[i].y);
    56     }
    57     for(int i = 0; i < n + 1; ++ i) {
    58       for(int j = 1; j <= m; ++ j) {
    59         if(vi[j] == tim) continue;
    60         if(p[j].y == b) {
    61           if(p[j].x >= l[i].zx && p[j].x <= l[i + 1].zx) {
    62             vi[j] = tim;
    63             num[i] ++;
    64           }
    65         }
    66         else if(p[j].y == d) {
    67           if(p[j].x >= l[i].yx && p[j].x <= l[i + 1].yx) {
    68             vi[j] = tim;
    69             num[i] ++;
    70           }
    71         }
    72         else if(i == 0 && p[j].x == a) {
    73           vi[j] = tim;
    74           num[0] ++;
    75         }
    76         else if(i == n && p[j].x == c) {
    77           vi[j] = tim;
    78           num[n] ++;
    79         }
    80         else if(1LL * cross(i, j) * cross(i + 1, j) < 0) {
    81           vi[j] = tim;
    82           num[i] ++;
    83         }
    84       }
    85     }
    86     for(int i = 0; i < n + 1; ++ i) {
    87       printf("%d: %d
    ", i, num[i]);
    88     }
    89     puts("");
    90   }
    91 
    92 #ifndef ONLINE_JUDGE
    93   fclose(stdin); fclose(stdout);
    94 #endif
    95   return 0;
    96 }
    poj 2318

    题目2: POJ 2398 Toys

    题目大意:

    同上。不过不同的是,这里面的挡板输入是没有顺序的,而且问的是有t个玩具的格子有几个。

    算法讨论:

    上个题小小变动一下就可以了。

      1 #include <cstdio>
      2 #include <cstring>
      3 #include <cstdlib>
      4 #include <iostream>
      5 #include <algorithm>
      6 #include <cmath>
      7 
      8 using namespace std;
      9 
     10 const int M = 5000 + 5;
     11 typedef long long ll;
     12 
     13 int n, m, a, b, c, d;
     14 int vi[M], tim = 0, num[M], out[M];
     15 
     16 struct Line {
     17   int zx, zy, yx, yy;
     18   bool operator < (const Line &h) const {
     19     int lx1 = max(zx, yx), mx1 = min(zx, yx);
     20     int lx2 = max(h.zx, h.yx), mx2 = min(h.zx, h.yx);
     21 
     22     if(mx2 == mx1) {
     23       return lx1 < lx2;
     24     }
     25     return mx1 < mx2;
     26   }
     27 }l[M];
     28 
     29 struct Point {
     30   int x, y;
     31   bool operator < (const Point &h) const {
     32     if(h.x == x) return y < h.y;
     33     return x < h.x;
     34   }
     35 }p[M];
     36 
     37 ll cross(int i, int j) {
     38   return 1LL * (l[i].zx - p[j].x) * (l[i].yy - p[j].y) - 1LL * (l[i].yx - p[j].x) * (l[i].zy - p[j].y);
     39 }
     40 #define ONLINE_JUDGE
     41 
     42 int main() {
     43 #ifndef ONLINE_JUDGE
     44   freopen("t.txt", "r", stdin);
     45   freopen("t.out", "w", stdout);
     46 #endif
     47   
     48   int u, v;
     49   
     50   while(scanf("%d", &n) && n) {
     51     scanf("%d%d%d%d%d", &m, &a, &b, &c, &d);
     52     ++ tim;
     53     memset(num, 0, sizeof num);
     54     memset(out, 0, sizeof out);
     55     for(int i = 1; i <= n; ++ i) {
     56       scanf("%d%d", &u, &v);
     57       l[i].zx = u; l[i].zy = b;
     58       l[i].yx = v; l[i].yy = d;
     59     }
     60     sort(l + 1, l + n + 1);
     61     l[0].zx = l[0].yx = a;
     62     l[0].zy = b; l[0].yy = d;
     63     l[n + 1].zx = l[n + 1].yx = c;
     64     l[n + 1].zy = b; l[n + 1].yy = d;
     65     for(int i = 1; i <= m; ++ i) {
     66       scanf("%d%d", &p[i].x, &p[i].y);
     67     }
     68     for(int i = 0; i < n + 1; ++ i) {
     69       for(int j = 1; j <= m; ++ j) {
     70         if(vi[j] == tim) continue;
     71         if(p[j].y == b) {
     72           if(p[j].x >= l[i].zx && p[j].x <= l[i + 1].zx) {
     73             vi[j] = tim;
     74             num[i] ++;
     75           }
     76         }
     77         else if(p[j].y == d) {
     78           if(p[j].x >= l[i].yx && p[j].x <= l[i + 1].yx) {
     79             vi[j] = tim;
     80             num[i] ++;
     81           }
     82         }
     83         else if(i == 0 && p[j].x == a) {
     84           vi[j] = tim;
     85           num[0] ++;
     86         }
     87         else if(i == n && p[j].x == c) {
     88           vi[j] = tim;
     89           num[n] ++;
     90         }
     91         else if(1LL * cross(i, j) * cross(i + 1, j) < 0) {
     92           vi[j] = tim;
     93           num[i] ++;
     94         }
     95       }
     96     }
     97     for(int i = 0; i < n + 1; ++ i) {
     98       out[num[i]] ++;
     99     }
    100     puts("Box");
    101     for(int i = 1; i <= m; ++ i) {
    102       if(out[i])
    103         printf("%d: %d
    ", i, out[i]);
    104     }
    105   }
    106 
    107 #ifndef ONLINE_JUDGE
    108   fclose(stdin); fclose(stdout);
    109 #endif
    110   return 0;
    111 }
    poj 2398

    题目3: POJ 1654 Area

    题目大意:

    给一个数字序列,每个数字都代表向特定的方向走。求数字围成的多边形的面积。数据保证合法。

    算法讨论:

    直接做就行。注意输出的时候,分类讨论下就可以了。而且注意内存,不能把点存下来,要边读入边计算。

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <cstdlib>
     4 #include <algorithm>
     5 #include <iostream>
     6 #include <cmath>
     7 
     8 using namespace std;
     9 
    10 const int N = 1000000 + 5;
    11 
    12 int len, cnt;
    13 char str[N];
    14 int dx[]={0, 1, 1, 1, 0, 0, 0, -1, -1, -1};
    15 int dy[]={0, -1, 0, 1, -1, 0, 1, -1, 0, 1};
    16 
    17 double cross(double a, double b, double c, double d) {
    18   return a * d - b * c;
    19 }
    20 
    21 int main() {
    22   int t;
    23 
    24   scanf("%d", &t);
    25 
    26   while(t --) {
    27     scanf("%s", str + 1);
    28     len = strlen(str + 1);
    29 
    30     double last_x = 0, last_y = 0;
    31     double area = 0;
    32     
    33     for(int i = 1; i <= len; ++ i) {
    34       int q = str[i] - '0';
    35 
    36       if(q == 5) {
    37         break;
    38       }
    39       area += cross(last_x, last_y, last_x + dx[q], last_y  + dy[q]);
    40       last_x += dx[q]; last_y += dy[q];
    41     }
    42 
    43     if((int)area & 1)
    44       printf("%.0lf.5
    ", floor(fabs(area) / 2));
    45     else
    46       printf("%.0lf
    ", fabs(area) / 2);
    47   }
    48   return 0;
    49 }
    POJ 1654

    题目4: POJ 1269 Intersecting Lines

    题目大意:

    给出直线对,判断这对直线的关系:平行,重合或者相交。

    算法讨论:

    假设直线1的两个点编号为1,2,直线2的两个点编号为3,4,如果 1,2,4的叉积为0, 1,2,3的叉积为0,则说明重合。

    如果不重合,用两点式算斜率,为了避免除0错误,把两边除法比较变形为乘法。

    如果不重合也不平行,就相交,用分点定理找交点。我的代码中只有规范相交的部分。具体代码请见刘汝佳《算法艺术与信息学竞赛》P357页。

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <cstdlib>
     4 #include <algorithm>
     5 #include <iostream>
     6 #include <cmath>
     7 
     8 using namespace std;
     9 
    10 const double eps = 1e-5;
    11 
    12 int n;
    13 
    14 struct Point {
    15   double a, b;
    16   Point(double _a = 0, double _b = 0):
    17     a(_a), b(_b) {}
    18 }c[5];
    19 
    20 double cross(int i, int j, int k) {
    21   return (c[i].a - c[k].a) * (c[j].b - c[k].b) - (c[j].a - c[k].a) * (c[i].b - c[k].b);
    22 }
    23 
    24 int dcmp(double s) {
    25   return s > eps ? 1 : (s < -eps ? -1 : 0);
    26 }
    27 
    28 void solve() {
    29   if(fabs(cross(1, 2, 3)) <= eps && fabs(cross(1, 2, 4)) <= eps) puts("LINE");
    30   else if((c[2].b - c[1].b) * (c[4].a - c[3].a) == (c[2].a - c[1].a) * (c[4].b - c[3].b))
    31     puts("NONE");
    32   else {
    33     double s1 = cross(1, 2, 3), s2 = cross(1, 2, 4);
    34     double x = (c[3].a * s2 - c[4].a * s1) / (s2 - s1);
    35     double y = (c[3].b * s2 - c[4].b * s1) / (s2 - s1);
    36     
    37     printf("POINT %.2f %.2f
    ", x, y);
    38   }
    39 }
    40 
    41 int main() {
    42   double a, b;
    43   
    44   puts("INTERSECTING LINES OUTPUT");
    45   scanf("%d", &n);
    46   for(int i = 1; i <= n; ++ i) {
    47     for(int j = 1; j <= 4; ++ j) {
    48       scanf("%lf%lf", &a, &b);
    49       c[j] = Point(a, b);
    50     }
    51     solve();
    52   }
    53   puts("END OF OUTPUT");
    54   return 0;
    55 }
    POJ 1269

    题目5: POJ 1113 Wall

    题目大意:

    求给出点集的凸包长度+一个半径为r的圆的周长和。

    算法讨论:

    看了下面这个图,你就什么都明白了。

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <cstdlib>
     4 #include <iostream>
     5 #include <algorithm>
     6 #include <cmath>
     7 
     8 #define pi 3.1415926535
     9 
    10 using namespace std;
    11 
    12 const int N = 1000 + 5;
    13 const double eps = 1e-6;
    14 
    15 int n, l;
    16 double ans = 0;
    17 
    18 struct Point {
    19   double x, y;
    20 }p[N], st[N];
    21 
    22 double dist(Point a, Point b) {
    23   return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
    24 }
    25 
    26 double cross(Point a, Point b, Point c) {
    27   return (a.x - c.x) * (b.y - c.y) - (b.x - c.x) * (a.y - c.y);
    28 }
    29 
    30 bool cmp(Point a, Point b) {
    31   if(cross(a, b, p[0]) == 0)
    32     return dist(a, p[0]) < dist(b, p[0]);
    33   return cross(a, b, p[0]) > 0;
    34 }
    35 
    36 void Graham() {
    37   int top = 2, k = 0;
    38 
    39   for(int i = 1; i < n; ++ i) {
    40     if(p[i].x < p[k].x || (p[i].x == p[k].x && p[i].y < p[k].y))
    41       k = i;
    42   }
    43   swap(p[k], p[0]);
    44   sort(p + 1, p + n, cmp);
    45   st[0] = p[0]; st[1] = p[1]; st[2] = p[2];
    46   for(int i = 3; i < n; ++ i) {
    47     while(top && cross(p[i], st[top], st[top - 1]) >= 0) top --;
    48     st[++ top] = p[i];
    49   }
    50   st[++ top] = p[0];
    51   for(int i = 0; i < top; ++ i)
    52     ans += dist(st[i], st[i + 1]);
    53 }
    54 
    55 int main() {
    56   scanf("%d%d", &n, &l);
    57   for(int i = 0; i < n; ++ i) {
    58     scanf("%lf%lf", &p[i].x, &p[i].y);
    59   }
    60   Graham();
    61   printf("%.0f", (double) ans + (double) 2 * pi * l);
    62   return 0;
    63 }
    POJ 1113

    题目6: POJ 3304 Segments

    题目大意:

    给出N个线段,是否有存在一条直线与所有线段都相交。

    算法讨论:

    这个直线一定经过线段的两个端点。所以我们枚举端点然后判断是否与每条线段相交即可。

    判断相交的方法,用跨立实验。如果直线上的两个点与线段的两个点的叉积大于0,说明相交。

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <cstdlib>
     4 #include <iostream>
     5 #include <algorithm>
     6 #include <cmath>
     7 
     8 using namespace std;
     9 
    10 const int N = 100 + 5;
    11 const double eps = 1e-8;
    12 
    13 int n, cnt;
    14 
    15 struct Line {
    16   double a, b, c, d;
    17 }l[N];
    18 struct Point {
    19   double x, y;
    20 }p[N<<1];
    21 double cross(int i, int j, int k) {
    22   double t1 = (p[i].x - l[k].a) * (p[j].y - l[k].b) - (p[j].x - l[k].a) * (p[i].y - l[k].b);
    23   double t2 = (p[i].x - l[k].c) * (p[j].y - l[k].d) - (p[j].x - l[k].c) * (p[i].y - l[k].d);
    24   return t1 * t2;
    25 }
    26 int main() {
    27   int t;
    28 
    29   scanf("%d", &t);
    30 
    31   while(t --) {
    32     cnt = 0;
    33     scanf("%d", &n);
    34     for(int i = 1; i <= n; ++ i) {
    35       scanf("%lf%lf%lf%lf", &l[i].a, &l[i].b, &l[i].c, &l[i].d);
    36       p[++ cnt].x = l[i].a; p[cnt].y = l[i].b;
    37       p[++ cnt].x = l[i].c; p[cnt].y = l[i].d;
    38     }
    39     if(n == 1 || n == 2) {
    40       puts("Yes!");
    41       continue;
    42     }
    43     for(int i = 1; i <= cnt; ++ i) {
    44       for(int j = i + 1; j <= cnt; ++ j) {
    45         if(fabs(p[i].x - p[j].x) < eps && fabs(p[i].y - p[j].y) < eps) continue;
    46         for(int k = 1; k <= n; ++ k) {
    47           if(cross(i, j, k) > 0) {
    48             break;
    49           }
    50           if(k == n) {
    51             puts("Yes!");
    52             goto A;
    53           }
    54         }
    55       }
    56     }
    57     puts("No!");
    58     A:;
    59   }
    60 
    61   return 0;
    62 }
    POJ 3304

    题目7: POJ 2187 Beauty Conteset

    题目大意:

    求平面点集最远点距离平方。

    算法讨论:

    旋转卡壳直接上吧。

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <cstdlib>
     4 #include <algorithm>
     5 #include <iostream>
     6 #include <cmath>
     7 
     8 using namespace std;
     9 
    10 const int N = 50000 + 5;
    11 
    12 int n, top = 2;
    13 double ans;
    14 
    15 struct Point {
    16   double x, y;
    17 }p[N], st[N];
    18 
    19 double dist(Point a, Point b) {
    20   return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
    21 }
    22 
    23 double cross(Point a, Point b, Point c) {
    24   return (a.x - c.x) * (b.y - c.y) - (b.x - c.x) * (a.y - c.y);
    25 }
    26 
    27 double cal(Point a, Point b) {
    28   return pow(a.x - b.x, 2) + pow(a.y - b.y, 2);
    29 }
    30 
    31 bool cmp(Point a, Point b) {
    32   if(cross(a, b, p[0]) == 0)
    33     return dist(a, p[0]) < dist(b, p[0]);
    34   return cross(a, b, p[0]) > 0;
    35 }
    36 
    37 void Graham() {
    38   int k = 0;
    39 
    40   for(int i = 1; i < n; ++ i)
    41     if(p[i].x < p[k].x || (p[i].x == p[k].x && p[i].y < p[k].y))
    42       k = i;
    43   swap(p[0], p[k]);
    44   sort(p + 1, p + n, cmp);
    45   st[0] = p[0]; st[1] = p[1]; st[2] = p[2];
    46   for(int i = 3; i < n; ++ i) {
    47     while(top && cross(p[i], st[top], st[top - 1]) >= 0) top --;
    48     st[++ top] = p[i];
    49   }
    50   st[++ top] = p[0];
    51 }
    52 
    53 void rotate() {
    54   int q = 1;
    55 
    56   for(int i = 0; i < top; ++ i) {
    57     while(cross(st[i + 1], st[q + 1], st[i]) > cross(st[i + 1], st[q], st[i]))
    58       q = (q + 1) % top;
    59     ans = max(ans, max(cal(st[i], st[q]), cal(st[i + 1], st[q + 1])));
    60   }
    61 }
    62 
    63 int main() {
    64   scanf("%d", &n);
    65   for(int i = 0; i < n; ++ i) {
    66     scanf("%lf%lf", &p[i].x, &p[i].y);
    67   }
    68   Graham();
    69   rotate();
    70   printf("%.0f", ans);
    71   return 0;
    72 }
    POJ 2187

    题目8: POJ 1584 A Round Peg in a Ground Hole

    题目大意:

    给一个圆和一些点。你要做三件事:判断这些点是否组成一个凸多边形。 圆的圆心是否在多边形内。 圆是否在凸多边形内。

    算法讨论:

    对于第一个件事,我们直接做Graham然后看有多少个点在凸包上。注意排序的时候,如果三个点在一个竖线上的情况要在cmp函数里面判断一下。

    对于第二件事,由于这是一个凸多边形,所以我们用回转角法来判断是否在多边形内。注意这里eps不要取的太小,否则会被卡精度。

    对于第三件事,最简单的,直接算距离,注意相切的情况也算在多边形内部。

      1 #include <cstdio>
      2 #include <iostream>
      3 #include <cstring>
      4 #include <cstdlib>
      5 #include <algorithm>
      6 #include <cmath>
      7 
      8 #define pi 3.1415926535
      9 
     10 using namespace std;
     11 
     12 const int N = 100000 + 5;
     13 const double eps = 1e-5;
     14   
     15 int n, top = 2;
     16 double cx, cy, cr;
     17 
     18 struct Point {
     19   double x, y;
     20 }p[N], st[N];
     21 
     22 double dist(Point a, Point b) {
     23   return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
     24 }
     25 
     26 double cross(Point a, Point b, Point c) {
     27   return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x);
     28 }
     29 
     30 bool cmp(Point a, Point b) {
     31   if(cross(a, b, p[0]) == 0) {
     32     if(a.x == b.x && a.x == p[0].x)
     33       return dist(a, p[0]) > dist(b, p[0]);
     34     else
     35       return dist(a, p[0]) < dist(b, p[0]);
     36   }
     37   return cross(a, b, p[0]) > 0;
     38 }
     39 
     40 void Graham() {
     41   int k = 0;
     42   
     43   top = 2;
     44   for(int i = 1; i < n; ++ i) {
     45     if(p[i].x < p[k].x || (p[i].x == p[k].x && p[i].y < p[k].y))
     46       k = i;
     47   }
     48   swap(p[k], p[0]);
     49   sort(p + 1, p + n, cmp);
     50   st[0] = p[0]; st[1] = p[1]; st[2] = p[2];
     51   for(int i = 3; i < n; ++ i) {
     52     while(top && cross(p[i], st[top], st[top - 1]) > 0) top --;
     53     st[++ top] = p[i];
     54   }
     55   st[++ top] = p[0];
     56 }
     57 
     58 double len(int i) {
     59   return sqrt(pow(st[i].x - cx, 2) + pow(st[i].y - cy, 2));
     60 }
     61 
     62 double cal(int i, int j) {
     63   double t1 = (st[i].x - cx) * (st[j].x - cx) + (st[i].y - cy) * (st[j].y - cy);
     64   double t2 = len(i) * len(j);
     65 
     66   return t1 / t2;
     67 }
     68 
     69 int main() {
     70   while(1) {
     71     scanf("%d", &n);
     72     if(n < 3) break;
     73     scanf("%lf%lf%lf", &cr, &cx, &cy);
     74     for(int i = 0; i < n; ++ i) {
     75       scanf("%lf%lf", &p[i].x, &p[i].y);
     76     }
     77     Graham();
     78     if(top != n) {
     79       puts("HOLE IS ILL-FORMED");
     80       continue;
     81     }
     82 
     83     double tmp = 0;
     84     bool flag = false;
     85     
     86     for(int i = 0; i < top; ++ i) {
     87       tmp += (double)acos(cal(i, i + 1)) * 180 / pi;
     88     }
     89     if(fabs(tmp - 360.00000) > eps) {
     90       puts("PEG WILL NOT FIT");
     91       continue;
     92     }
     93     for(int i = 0; i < top; ++ i) {
     94       tmp = (st[i].x - cx) * (st[i + 1].y - cy) - (st[i + 1].x - cx) * (st[i].y - cy);
     95       tmp = fabs(tmp);
     96       tmp = tmp / dist(st[i], st[i + 1]);
     97       if(tmp - cr < -eps) {
     98         flag = true;
     99         break;
    100       }
    101     }
    102     if(flag) {
    103       puts("PEG WILL NOT FIT");
    104     }
    105     else {
    106       puts("PEG WILL FIT");
    107     }
    108   }
    109   return 0;
    110 }
    POJ 1584

    题目9: POJ 2079 Triangle

    题目大意:

    求点集中面积最大的三角形面积。

    算法讨论:

    类似旋转卡壳的算法。感觉这是个模板题。

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <cstdlib>
     4 #include <iostream>
     5 #include <algorithm>
     6 #include <cmath>
     7 
     8 using namespace std;
     9 
    10 const int N = 50000 + 5;
    11 
    12 int n, top;
    13 double ans = 0;
    14 
    15 struct Point {
    16   double x, y;
    17 }p[N], st[N];
    18 
    19 double dist(Point a, Point b) {
    20   return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
    21 }
    22 
    23 double cross(Point a, Point b, Point c) {
    24   return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x);
    25 }
    26 
    27 bool cmp(Point a, Point b) {
    28   if(cross(a, b, p[0]) == 0)
    29     return dist(a, p[0]) < dist(b, p[0]);
    30   return cross(a, b, p[0]) > 0;
    31 }
    32 
    33 void Graham() {
    34   int k = 0; top = 2;
    35 
    36   for(int i = 1; i < n; ++ i) {
    37     if(p[i].x < p[k].x || (p[i].x == p[k].x && p[i].y < p[k].y))
    38       k = i;
    39   }
    40   swap(p[0], p[k]);
    41   sort(p + 1, p + n, cmp);
    42   st[0] = p[0]; st[1]= p[1]; st[2] = p[2];
    43   for(int i = 3; i < n; ++ i) {
    44     while(top && cross(p[i], st[top], st[top - 1]) >= 0)top --;
    45     st[++ top] = p[i];
    46   }
    47   st[++ top] = p[0];
    48 }
    49 
    50 void rotate_triangle() {
    51   int i, j, k, kk;
    52 
    53   for(i = 0; i < top; ++ i) {
    54     j = (i + 1) % top;
    55     k = (j + 1) % top;
    56     while(k != i && cross(st[i], st[j], st[k]) < cross(st[i], st[j], st[k + 1]))
    57       k = (k + 1) % top;
    58     if(k == i) continue;
    59     kk = (k + 1) % top;
    60     while(j != kk && k != i) {
    61       ans = max(ans, fabs(cross(st[i], st[j], st[k])));
    62       while(k != i && cross(st[i], st[j], st[k]) < cross(st[i], st[j], st[k + 1]))
    63         k = (k + 1) % top;
    64       j = (j + 1) % top;
    65     }
    66   }
    67 }
    68 
    69 int main() {
    70   while(scanf("%d", &n) && n > 0) {
    71     ans = 0;
    72     for(int i = 0; i < n; ++ i) {
    73       scanf("%lf%lf", &p[i].x, &p[i].y);
    74     }
    75     Graham();
    76     rotate_triangle();
    77     printf("%.2f
    ", (double) ans / 2);
    78   }
    79 
    80   return 0;
    81 }
    POJ 2079

    题目10: POJ 2653 Pick-up sticks

    题目大意:

    给一坨线段,问哪里线段可以被看到。

    算法讨论:

    在网上看到了两种解法,一个是O(N^2)的暴力,但是不知道为什么对于10W的数据可以跑过。就是枚举每一个线段i,如果有线段和其相交,

    那么这个线段就是不可见。

    另一个解法就是对于当前线段,判断其是否与队列中的线段有交点,如果有,把有交点的那个线段出队,把这个入队,否则两个一起入队。

    看样子是一样的方法啊。我的代码还是没有不规范判断相交的部分。

     1 #include <iostream>
     2 #include <cstdlib>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <cstdio>
     6 #include <cmath>
     7 
     8 using namespace std;
     9 
    10 const int N = 100000 + 5;
    11 const double eps = 1e-6;
    12 
    13 int n;
    14 bool flag[N];
    15 
    16 struct Point {
    17   double x, y;
    18   Point(double _x = 0, double _y = 0):
    19     x(_x), y(_y) {}
    20 };
    21 struct Line {
    22   Point A, B;
    23 }l[N];
    24 
    25 double cross(Point a, Point b, Point c) {
    26   return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x);
    27 }
    28 
    29 int dcmp(double x) {
    30   return x > eps ? 1 : (x < -eps ? -1 : 0);
    31 }
    32 
    33 int segcross(Point a, Point b, Point c, Point d) {
    34   int d1, d2, d3, d4;
    35 
    36   d1 = dcmp(cross(a, b, c));
    37   d2 = dcmp(cross(a, b, d));
    38   d3 = dcmp(cross(c, d, a));
    39   d4 = dcmp(cross(c, d, b));
    40 
    41   if((d1 ^ d2) == -2 && (d3 ^ d4) == -2)
    42     return 1;
    43   return 0;
    44 }
    45 
    46 int main() {
    47   double a, b, c, d;
    48   
    49   while(scanf("%d", &n) && n) {
    50     for(int i = 1; i <= n; ++ i ) {
    51       scanf("%lf%lf%lf%lf", &a, &b, &c, &d);
    52       l[i].A = (Point){a, b};
    53       l[i].B = (Point){c, d};
    54       flag[i] = true;
    55     }
    56     for(int i = 1; i <= n; ++ i) {
    57       for(int j = i + 1; j <= n; ++ j) {
    58         if(segcross(l[i].A, l[i].B, l[j].A, l[j].B)) {
    59           flag[i] = false;
    60           break;
    61         }
    62       }
    63     }
    64     bool tmp = false;
    65     
    66     printf("Top sticks: ");
    67     for(int i = 1; i <= n; ++ i) {
    68       if(flag[i]) {
    69         if(!tmp) {
    70           printf("%d", i);
    71           tmp = true;
    72         }
    73         else {
    74           printf(", %d", i);
    75         }
    76       } 
    77     }
    78     puts(".");
    79   }
    80 
    81   return 0;
    82 }
    POJ 2653
  • 相关阅读:
    一个机智的数组去重方法
    gets(),fgets()的作用机制探究
    性能优化之布局优化
    android 中theme和style的语法相关
    可以一直滚动的跑马灯
    ExpandableListView的OnitemLongclickListener事件
    关于 edittext 软键盘退出监听解决办法
    Android 开发之拦截EditText的输入内容,定制输入内容
    decimalFormat(小数格式)
    oracle常用
  • 原文地址:https://www.cnblogs.com/sxprovence/p/5191853.html
Copyright © 2011-2022 走看看