zoukankan      html  css  js  c++  java
  • 高精度模板

      1 //作者:小黑AWM+MashPlant
      2 //注:可以直接把BigInt和一样用cin cout都行,就是高精乘为了速度才用了FFT降低了精度,有需要可以自行更改。
      3 #include <cstdio>
      4 #include <iostream>
      5 #include <cmath>
      6 #include <string>
      7 #include <cstring>
      8 #include <vector>
      9 #include <algorithm>
     10 using namespace std;
     11 const double PI = acos(-1.0);
     12 struct Complex{
     13     double x,y;
     14     Complex(double _x = 0.0,double _y = 0.0){
     15         x = _x;
     16         y = _y;
     17     }
     18     Complex operator-(const Complex &b)const{
     19         return Complex(x - b.x,y - b.y);
     20     }
     21     Complex operator+(const Complex &b)const{
     22         return Complex(x + b.x,y + b.y);
     23     }
     24     Complex operator*(const Complex &b)const{
     25         return Complex(x*b.x - y*b.y,x*b.y + y*b.x);
     26     }
     27 };
     28 void change(Complex y[],int len){
     29     int i,j,k;
     30     for(int i = 1,j = len/2;i<len-1;i++){
     31         if(i < j)    swap(y[i],y[j]);
     32         k = len/2;
     33         while(j >= k){
     34             j = j - k;
     35             k = k/2;
     36         }
     37         if(j < k)    j+=k;
     38     }
     39 }
     40 void fft(Complex y[],int len,int on){
     41     change(y,len);
     42     for(int h = 2;h <= len;h<<=1){
     43         Complex wn(cos(on*2*PI/h),sin(on*2*PI/h));
     44         for(int j = 0;j < len;j += h){
     45             Complex w(1,0);
     46             for(int k = j;k < j + h/2;k++){
     47                 Complex u = y[k];
     48                 Complex t = w*y[k + h/2];
     49                 y[k] = u + t;
     50                 y[k + h/2] = u - t;
     51                 w = w*wn;
     52             }
     53         }
     54     }
     55     if(on == -1){
     56         for(int i = 0;i < len;i++){
     57             y[i].x /= len;
     58         }
     59     }
     60 }
     61 class BigInt
     62 {
     63 #define Value(x, nega) ((nega) ? -(x) : (x))
     64 #define At(vec, index) ((index) < vec.size() ? vec[(index)] : 0)
     65     static int absComp(const BigInt &lhs, const BigInt &rhs)
     66     {
     67         if (lhs.size() != rhs.size())
     68             return lhs.size() < rhs.size() ? -1 : 1;
     69         for (int i = lhs.size() - 1; i >= 0; --i)
     70             if (lhs[i] != rhs[i])
     71                 return lhs[i] < rhs[i] ? -1 : 1;
     72         return 0;
     73     }
     74     using Long = long long;
     75     const static int Exp = 9;
     76     const static Long Mod = 1000000000;
     77     mutable std::vector<Long> val;
     78     mutable bool nega = false;
     79     void trim() const
     80     {
     81         while (val.size() && val.back() == 0)
     82             val.pop_back();
     83         if (val.empty())
     84             nega = false;
     85     }
     86     int size() const { return val.size(); }
     87     Long &operator[](int index) const { return val[index]; }
     88     Long &back() const { return val.back(); }
     89     BigInt(int size, bool nega) : val(size), nega(nega) {}
     90     BigInt(const std::vector<Long> &val, bool nega) : val(val), nega(nega) {}
     91 
     92 public:
     93     friend std::ostream &operator<<(std::ostream &os, const BigInt &n)
     94     {
     95         if (n.size())
     96         {
     97             if (n.nega)
     98                 putchar('-');
     99             for (int i = n.size() - 1; i >= 0; --i)
    100             {
    101                 if (i == n.size() - 1)
    102                     printf("%lld", n[i]);
    103                 else
    104                     printf("%0*lld", n.Exp, n[i]);
    105             }
    106         }
    107         else
    108             putchar('0');
    109         return os;
    110     }
    111     friend BigInt operator+(const BigInt &lhs, const BigInt &rhs)
    112     {
    113         BigInt ret(lhs);
    114         return ret += rhs;
    115     }
    116     friend BigInt operator-(const BigInt &lhs, const BigInt &rhs)
    117     {
    118         BigInt ret(lhs);
    119         return ret -= rhs;
    120     }
    121     BigInt(Long x = 0)
    122     {
    123         if (x < 0)
    124             x = -x, nega = true;
    125         while (x >= Mod)
    126             val.push_back(x % Mod), x /= Mod;
    127         if (x)
    128             val.push_back(x);
    129     }
    130     BigInt(const char *s)
    131     {
    132         int bound = 0, pos;
    133         if (s[0] == '-')
    134             nega = true, bound = 1;
    135         Long cur = 0, pow = 1;
    136         for (pos = strlen(s) - 1; pos >= Exp + bound - 1; pos -= Exp, val.push_back(cur), cur = 0, pow = 1)
    137             for (int i = pos; i > pos - Exp; --i)
    138                 cur += (s[i] - '0') * pow, pow *= 10;
    139         for (cur = 0, pow = 1; pos >= bound; --pos)
    140             cur += (s[pos] - '0') * pow, pow *= 10;
    141         if (cur)
    142             val.push_back(cur);
    143     }
    144     BigInt &operator=(const char *s){
    145         BigInt n(s);
    146         *this = n;
    147         return n;
    148     }
    149     BigInt &operator=(const Long x){
    150         BigInt n(x);
    151         *this = n;
    152         return n;
    153     }
    154     friend std::istream &operator>>(std::istream &is, BigInt &n){
    155         string s;
    156         is >> s;
    157         n=(char*)s.data();
    158         return is;
    159     }
    160     BigInt &operator+=(const BigInt &rhs)
    161     {
    162         const int cap = std::max(size(), rhs.size()) + 1;
    163         val.resize(cap);
    164         int carry = 0;
    165         for (int i = 0; i < cap - 1; ++i)
    166         {
    167             val[i] = Value(val[i], nega) + Value(At(rhs, i), rhs.nega) + carry, carry = 0;
    168             if (val[i] >= Mod)
    169                 val[i] -= Mod, carry = 1;
    170             else if (val[i] < 0)
    171                 val[i] += Mod, carry = -1;
    172         }
    173         if ((val.back() = carry) == -1) //assert(val.back() == 1 or 0 or -1)
    174         {
    175             nega = true, val.pop_back();
    176             bool tailZero = true;
    177             for (int i = 0; i < cap - 1; ++i)
    178             {
    179                 if (tailZero && val[i])
    180                     val[i] = Mod - val[i], tailZero = false;
    181                 else
    182                     val[i] = Mod - 1 - val[i];
    183             }
    184         }
    185         trim();
    186         return *this;
    187     }
    188     friend BigInt operator-(const BigInt &rhs)
    189     {
    190         BigInt ret(rhs);
    191         ret.nega ^= 1;
    192         return ret;
    193     }
    194     BigInt &operator-=(const BigInt &rhs)
    195     {
    196         rhs.nega ^= 1;
    197         *this += rhs;
    198         rhs.nega ^= 1;
    199         return *this;
    200     }
    201     friend BigInt operator*(const BigInt &lhs, const BigInt &rhs)
    202     {
    203         int len=1;
    204         BigInt ll=lhs,rr=rhs;
    205         ll.nega = lhs.nega ^ rhs.nega;
    206         while(len<2*lhs.size()||len<2*rhs.size())len<<=1;
    207         ll.val.resize(len),rr.val.resize(len);
    208         Complex x1[len],x2[len];
    209         for(int i=0;i<len;i++){
    210             Complex nx(ll[i],0.0),ny(rr[i],0.0);
    211             x1[i]=nx;
    212             x2[i]=ny;
    213         }
    214         fft(x1,len,1);
    215         fft(x2,len,1);
    216         for(int i = 0 ; i < len; i++)
    217             x1[i] = x1[i] * x2[i];
    218         fft( x1 , len , -1 );
    219         for(int i = 0 ; i < len; i++)
    220             ll[i] = int( x1[i].x + 0.5 );
    221         for(int i = 0 ; i < len; i++){
    222             ll[i+1]+=ll[i]/Mod;
    223             ll[i]%=Mod;
    224         }
    225         ll.trim();
    226         return ll;
    227     }
    228     friend BigInt operator*(const BigInt &lhs, const Long &x){
    229         BigInt ret=lhs;
    230         bool negat = ( x < 0 );
    231         Long xx = (negat) ? -x : x;
    232         ret.nega ^= negat;
    233         ret.val.push_back(0);
    234         ret.val.push_back(0);
    235         for(int i = 0; i < ret.size(); i++)
    236             ret[i]*=xx;
    237         for(int i = 0; i < ret.size(); i++){
    238             ret[i+1]+=ret[i]/Mod;
    239             ret[i] %= Mod;
    240         }
    241         ret.trim();
    242         return ret;
    243     }
    244     BigInt &operator*=(const BigInt &rhs) { return *this = *this * rhs; }
    245     BigInt &operator*=(const Long &x) { return *this = *this * x; }
    246     friend BigInt operator/(const BigInt &lhs, const BigInt &rhs)
    247     {
    248         static std::vector<BigInt> powTwo{BigInt(1)};
    249         static std::vector<BigInt> estimate;
    250         estimate.clear();
    251         if (absComp(lhs, rhs) < 0)
    252             return BigInt();
    253         BigInt cur = rhs;
    254         int cmp;
    255         while ((cmp = absComp(cur, lhs)) <= 0)
    256         {
    257             estimate.push_back(cur), cur += cur;
    258             if (estimate.size() >= powTwo.size())
    259                 powTwo.push_back(powTwo.back() + powTwo.back());
    260         }
    261         if (cmp == 0)
    262             return BigInt(powTwo.back().val, lhs.nega ^ rhs.nega);
    263         BigInt ret = powTwo[estimate.size() - 1];
    264         cur = estimate[estimate.size() - 1];
    265         for (int i = estimate.size() - 1; i >= 0 && cmp != 0; --i)
    266             if ((cmp = absComp(cur + estimate[i], lhs)) <= 0)
    267                 cur += estimate[i], ret += powTwo[i];
    268         ret.nega = lhs.nega ^ rhs.nega;
    269         return ret;
    270     }
    271     friend BigInt operator/(const BigInt &num,const Long &x){
    272         bool negat = ( x < 0 );
    273         Long xx = (negat) ? -x : x;
    274         BigInt ret;
    275         Long k = 0;
    276         ret.val.resize( num.size() );
    277         ret.nega = (num.nega ^ negat);
    278         for(int i = num.size() - 1 ;i >= 0; i--){
    279             ret[i] = ( k * Mod + num[i]) / xx;
    280             k = ( k * Mod + num[i]) % xx;
    281         }
    282         ret.trim();
    283         return ret;
    284     }
    285     bool operator==(const BigInt &rhs) const
    286     {
    287         return nega == rhs.nega && val == rhs.val;
    288     }
    289     bool operator!=(const BigInt &rhs) const { return nega != rhs.nega || val != rhs.val; }
    290     bool operator>=(const BigInt &rhs) const { return !(*this < rhs); }
    291     bool operator>(const BigInt &rhs) const { return !(*this <= rhs); }
    292     bool operator<=(const BigInt &rhs) const
    293     {
    294         if (nega && !rhs.nega)
    295             return true;
    296         if (!nega && rhs.nega)
    297             return false;
    298         int cmp = absComp(*this, rhs);
    299         return nega ? cmp >= 0 : cmp <= 0;
    300     }
    301     bool operator<(const BigInt &rhs) const
    302     {
    303         if (nega && !rhs.nega)
    304             return true;
    305         if (!nega && rhs.nega)
    306             return false;
    307         return (absComp(*this, rhs) < 0) ^ nega;
    308     }
    309     void swap(const BigInt &rhs) const
    310     {
    311         std::swap(val, rhs.val);
    312         std::swap(nega, rhs.nega);
    313     }
    314 };
    315 BigInt ba,bb;
    316 int main(){
    317     cin>>ba>>bb;
    318     cout << ba + bb << '
    ';//
    319     cout << ba - bb << '
    ';//
    320     cout << ba * bb << '
    ';//
    321     BigInt d;
    322     cout << (d = ba / bb) << '
    ';//
    323     cout << ba - d * bb << '
    ';//
    324     return 0;
    325 }
    View Code
  • 相关阅读:
    面试中你能做到随机应变吗? 沧海
    QQ只是一场意外 沧海
    面 试 中 要 慎 言 沧海
    你会应对这些面试题吗? 沧海
    面 试 小 技 巧 沧海
    面试抓住最初三分钟至关重要 沧海
    面试的十二种高级错误 沧海
    几种有难度的面试 沧海
    面试技巧: 轻松过关10种方法 沧海
    面 试 细 节 一 点 通 沧海
  • 原文地址:https://www.cnblogs.com/sxq-study/p/12562892.html
Copyright © 2011-2022 走看看