准备工作
1. scrapy startproject Jobs
2. cd Jobs
3. scrapy genspider ZhaopinSpider www.zhaopin.com
4. scrapy crawl ZhaopinSpider
5. pip install diskcache
6. pip install tinydb
7. scrapy crawl ZhaopinSpider -o chongqing.json
ZhaopinSpider
# -*- coding: utf-8 -*- import os import json from tinydb import TinyDB, Query from furl import furl import scrapy class ZhaopinspiderSpider(scrapy.Spider): name = 'ZhaopinSpider' allowed_domains = ['www.zhaopin.com', 'sou.zhaopin.com', 'fe-api.zhaopin.com'] start_urls = ['https://www.zhaopin.com/citymap'] cache_db = TinyDB('ZhaopinSpider-cache.json') # 缓存数据库 allowed_cities = ['重庆', ]# '成都', '上海', '深圳', '昆明', '杭州', '贵阳', '宁波'] ## 允许的城市 F = furl('https://fe-api.zhaopin.com/c/i/sou?pageSize=90&kt=3') # URL母版 PAGE_SIZE = 90 # 分页大小 def get_city_code(self, city_name): '''(根据城市名)获取城市代码''' Q = Query() city = self.cache_db.get(Q.name.search(city_name)) if isinstance(city, dict): return city['code'] else: print('@' * 100) print(type(city)) def init_city_info(self, response): '''初始化城市信息''' # 取源码 script_text = response.xpath('//script[text()[contains(., "__INITIAL_STATE__")]]/text()').extract_first() # 去收尾空格 script_text = script_text.strip() # 预处理为符合json规范的数据 script_json = script_text[script_text.index('=') + 1:] # 将json字符串转为字典 script_dict = json.loads(script_json) ''' # 存储取得的json, 便于调试查看 with open('text.json', 'wt', encoding='utf-8') as f: json.dump(script_dict, f, indent=4, ensure_ascii=False) ''' ''' city_list = [] # 存储城市列表 # 将字典中的城市提取到列表中,便于查找 for ch in script_dict['cityList']['cityMapList']: city_list.extend(script_dict['cityList']['cityMapList'][ch]) # 筛选出重庆,并获取城市码 city_code = (list(filter(lambda city: city['name'] == '重庆', city_list)) or [{'code': None}])[0]['code'] ''' for ch in script_dict['cityList']['cityMapList']: for city in script_dict['cityList']['cityMapList'][ch]: self.cache_db.insert(city) def parse(self, response): # if not os.path.exists('ZhaopinSpider-cache.json'): if not bool(self.eache_db.all()): self.init_city_info(response) # 迭代每一个要爬取的城市 for city_name in self.allowed_cities: # 启动 爬取某个城市 第一个请求 # import ipdb; ipdb.set_trace() yield self.request_city(city_name) def request_city(self, city_name, page_start=0): '''构造 爬取某个具体的城市 的请求对象''' city_code = self.get_city_code(city_name) url_data = { 'cityId': city_code, 'kw': 'python', 'start': page_start } # 要爬取的页面的URL url = self.F.copy().add(url_data).url # import ipdb; ipdb.set_trace() req = scrapy.Request(url, callback=self.parse_city, dont_filter=False) # 使用 meta 传递附加数据,在 callback 中可以通过 respo.meta 取得 req.meta['city_name'] = city_name req.meta['page_start'] = page_start return req def parse_city(self, response): '''解析具体的页面''' # 解析json格式的响应结果 resp_dict = json.loads(response.body_as_unicode()) # 总共所能爬取的条数 num_found = resp_dict['data']['numFound'] # 获取当前请求的 page_start page_start = response.meta['page_start'] # 下一次请求,需要的 start 参数 next_start = page_start + self.PAGE_SIZE # import ipdb; ipdb.set_trace() # 判断是否有下一页 if next_start < num_found: # 获取当前请求的 城市名 city_name = response.meta['city_name'] # 发送下一页请求 yield self.request_city(city_name, page_start=next_start) # 解析数据 for item in resp_dict['data']['results']: # TODO: 解析数据,只取我们需要的信息 item['spiderName'] = self.name # 返回每一条数据 yield item