zoukankan      html  css  js  c++  java
  • 分治算法


    一、基本概念

    在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……

    任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。

    二、基本思想及策略

    分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

    分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

    如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

    三、分治法适用的情况

    分治法所能解决的问题一般具有以下几个特征:
    
    1) 该问题的规模缩小到一定的程度就可以容易地解决
    
    2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
    
    3) 利用该问题分解出的子问题的解可以合并为该问题的解;
    
    4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

    第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;

    第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、

    第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。

    第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

    四、分治法的基本步骤

    分治法在每一层递归上都有三个步骤:

    step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
    
    step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
    
    step3 合并:将各个子问题的解合并为原问题的解。
    

    它的一般的算法设计模式如下:

    Divide-and-Conquer(P)

    1. if |P|≤n0

    2. then return(ADHOC(P))

    3. 将P分解为较小的子问题 P1 ,P2 ,...,Pk

    4. for i←1 to k

    5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi

    6. T ← MERGE(y1,y2,...,yk) △ 合并子问题

    7. return(T) 其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。算法MERGE(y1,y2,...,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,...,Pk的相应的解y1,y2,...,yk合并为P的解。

    五、分治法的复杂性分析

    一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:T(n)= k T(n/m)+f(n)

    通过迭代法求得方程的解: 递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当 mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。

    六、可使用分治法求解的一些经典问题

    (1)二分搜索

    (2)大整数乘法

    (3)Strassen矩阵乘法

    (4)棋盘覆盖

    (5)合并排序

    (6)快速排序

    (7)线性时间选择

    (8)最接近点对问题

    (9)循环赛日程表

    (10)汉诺塔

    七、依据分治法设计程序时的思维过程

    实际上就是类似于数学归纳法,找到解决本问题的求解方程公式,然后根据方程公式设计递归程序。

    1、一定是先找到最小问题规模时的求解方法
    2、然后考虑随着问题规模增大时的求解方法
    3、找到求解的递归函数式后(各种规模或因子),设计递归程序即可。

    八、汉诺塔问题

    相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏。该游戏是在一块铜板装置上,有三根杆(编号A、B、C),在A杆自下而上、由大到小按顺序放置64个金盘(如下图)。游戏的目标:把A杆上的金盘全部移到C杆上,并仍保持原有顺序叠好。操作规则:每次只能移动一个盘子,并且在移动过程中三根杆上都始终保持大盘在下,小盘在上,操作过程中盘子可以置于A、B、C任一杆上。 
    汉诺塔问题图示 
    分析:对于这样一个问题,任何人都不可能直接写出移动盘子的每一步,但我们可以利用下面的方法来解决。设移动盘子数为n,为了将这n个盘子从A杆移动到C杆,可以做以下三步:
    (1)以C盘为中介,从A杆将1至n-1号盘移至B杆;
    (2)将A杆中剩下的第n号盘移至C杆;
    (3)以A杆为中介;从B杆将1至n-1号盘移至C杆。 
    这样问题解决了,但实际操作中,只有第二步可直接完成,而第一、三步又成为移动的新问题。以上操作的实质是把移动n个盘子的问题转化为移动n-1个盘,那一、三步如何解决?事实上,上述方法设盘子数为n, n可为任意数,该法同样适用于移动n-1个盘。因此,依据上法,可解决n -1个盘子从A杆移到B杆(第一步)或从B杆移到C杆(第三步)问题。现在,问题由移动n个盘子的操作转化为移动n-2个盘子的操作。依据该原理,层层递推,即可将原问题转化为解决移动n -2、n -3… … 3、2,直到移动1个盘的操作,而移动一个盘的操作是可以直接完成的。至此,我们的任务算作是真正完成了。而这种由繁化简,用简单的问题和已知的操作运算来解决复杂问题的方法,就是递归法。在计算机设计语言中,用递归法编写的程序就是递归程序。 
    汉诺塔问题是用递归方法求解的一个典型问题,在实际教学中,可以在传统教学方式的基础上,利用计算机辅助教学进行算法的模拟演示教学,使学生更容易接受和理解递归算法的思想,不但能提高学生的学习兴趣,而且还能取得较好的教学效果。
    public class DivideAndRule {
    
        public static void main(String[] args) {
            hanoiTower(10,'A','B','C');
            System.out.println(count);
    
        }
    
       /*汉诺塔分治算法*/
        private  static int count=0;
       public static void hanoiTower(int num,char a,char b,char c) {
           count++;
            if (num==1){//只有一个盘
                System.out.println("第1个盘"+a+"->"+c);
            }else {
                /*看成俩个盘,最上面盘1的最下面的1个盘2*/
                hanoiTower(num-1,a,c,b);
                System.out.println("第"+num+"个盘从"+a+"->"+c);
                hanoiTower(num-1,b,a,c);
            }
       }
    
    }
     
  • 相关阅读:
    Maven学习总结(二)——Maven项目构建过程练习
    使用Maven搭建Struts2框架的开发环境
    使用Maven编译项目遇到——“maven编码gbk的不可映射字符”解决办法
    MyEclipse10安装Log4E插件
    大数据以及Hadoop相关概念介绍
    Servlet3.0学习总结(四)——使用注解标注监听器(Listener)
    Servlet3.0学习总结(三)——基于Servlet3.0的文件上传
    Servlet3.0学习总结(二)——使用注解标注过滤器(Filter)
    Servlet3.0学习总结(一)——使用注解标注Servlet
    使用kaptcha生成验证码
  • 原文地址:https://www.cnblogs.com/sxw123/p/12806167.html
Copyright © 2011-2022 走看看