zoukankan      html  css  js  c++  java
  • Go中锁的那些姿势,估计你不知道

    什么是锁,为什么使用锁

    用俗语来说,锁意味着一种保护,对资源的一种保护,在程序员眼中,这个资源可以是一个变量,一个代码片段,一条记录,一张数据库表等等。

    就跟小孩需要保护一样,不保护的话小孩会收到伤害,同样的使用锁的原因是资源不保护的话,可能会受到污染,在并发情况下,多个人对同一资源进行操作,有可能导致资源不符合预期的修改。

    常见的锁的种类

    锁的种类细分的话,非常多,主要原因是从不同角度看,对锁的定义不一样,我这里总结了一下,画一个思维脑图,大家了解一下。

    我个人认为锁都可以归为一下四大类,其它的叫法不同只是因为其实现方式或者应用场景而得名,但本质上上还是下面的这四大类中一种。

    其它各种类的锁总结如下,这些锁只是为了高性能,为了各种应用场景在代码实现上做了很多工作,因此而得名,关于他们的资料很多

    更多锁的详细解释参考我github的名词描述,这里不在赘述,地址如下:

    https://github.com/sunpengwei1992/java_common/tree/master/src/lock
    

    Go中的锁使用和实现分析

    Go的代码库中为开发人员提供了一下两种锁:

    1. 互斥锁 sync.Mutex
    2. 读写锁 sync.RWMutex

    第一个互斥锁指的是在Go编程中,同一资源的锁定对各个协程是相互排斥的,当其中一个协程获取到该锁时,其它协程只能等待,直到这个获取锁的协程释放锁之后,其它的协程才能获取。

    第二个读写锁依赖于互斥锁的实现,这个指的是当多个协程对某一个资源都是只读操作,那么多个协程可以获取该资源的读锁,并且互相不影响,但当有协程要修改该资源时就必须获取写锁,如果获取写锁时,已经有其它协程获取了读写或者写锁,那么此次获取失败,也就是说读写互斥,读读共享,写写互斥。

    Go中关于锁的接口定义如下:,该接口的实现就是上面的两个锁种类,篇幅有限,这篇文章主要是分析一下互斥锁的使用和实现,因为RWMutex也是基于Mutex的,大家可以参考文章自行学习一下。

    type Locker interface {
       Lock()
       Unlock()
    }
    type Mutex struct {
       state int32 //初始值默认为0
       sema  uint32 //初始值默认为0
    }
    

    Mutex使用也非常的简单,,声明一个Mutex变量就可以直接调用Lock和Unlock方法了,如下代码实例,但使用的过程中有一些注意点,如下:

    1. 同一个协程不能连续多次调用Lock,否则发生死锁
    2. 锁资源时尽量缩小资源的范围,以免引起其它协程超长时间等待
    3. mutex传递给外部的时候需要传指针,不然就是实例的拷贝,会引起锁失败
    4. 善用defer确保在函数内释放了锁
    5. 使用-race在运行时检测数据竞争问题,go test -race ....,go build -race ....
    6. 善用静态工具检查锁的使用问题
    7. 使用go-deadlock检测死锁,和指定锁超时的等待问题(自己百度工具用法)
    8. 能用channel的场景别使用成了lock
    var lock sync.Mutex
    
    func MutexStudy(){
        //获取锁
        lock.Lock()
        //业务逻辑操作
        time.Sleep(1 * time.Second)
        //释放锁
        defer lock.Unlock()
    }
    

    我们了解了Mutext的使用和注意事项,那么具体原理是怎么实现的呢?运用到了那些技术,下面一起分析一下Mutex的实现原理。

    Mutex实现中有两种模式,1:正常模式,2:饥饿模式,前者指的是当一个协程获取到锁时,后面的协程会排队(FIFO),释放锁时会唤醒最早排队的协程,这个协程会和正在CPU上运行的协程竞争锁,但是大概率会失败,为什么呢?因为你是刚被唤醒的,还没有获得CPU的使用权,而CPU正在执行的协程肯定比你有优势,如果这个被唤醒的协程竞争失败,并且超过了1ms,那么就会退回到后者(饥饿模式),这种模式下,该协程在下次获取锁时直接得到,不存在竞争关系,本质是为了防止协程等待锁的时间太长。

    两种模式都了解了,我们再来分析一下几个核心常量,代码如下:

    const (
       mutexLocked = 1 << iota //1, 0001 最后一位表示当前锁的状态,0未锁,1已锁 
       mutexWoken //2, 0010,倒数第二位表示当前锁是否会被唤醒,0唤醒,1未唤醒
       mutexStarving //4, 0100 倒数第三位表示当前对象是否为饥饿模式,0正常,1饥饿
       mutexWaiterShift = iota //3 从倒数第四位往前的bit表示排队的gorouting数量
       starvationThresholdNs = 1e6 // 饥饿的阈值:1ms
    )
    //Mutex中的变量,这里主要是将常量映射到state上面
    state //0代表未获取到锁,1代表得到锁,2-2^31表示gorouting排队的数量的
    sema //非负数的信号量,阻塞协程的依据
    

    这几个变量你要是都弄白了,那么代码看起来就相对好理解一些了,整个Lock的源码较长,我将注释写入代码中,方便大家理解,整个锁的过程其实分为三部分,建议大家参考源码和我的注释一块学习。

    1. 直接获取锁,返回
    2. 自旋和唤醒
    3. 判断各种状态,特殊情况处理

    第一部分代码如下,较为简单,获取锁成功之后直接返回

    //对state进行cas修改操作,修改成功相当于获取锁,修改之后state=1
    if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
    	return
    }
    

    第二部分自旋的代码如下

    //开始等待时间
    var waitStartTime int64
    //这几个变量含义依次是:是否饥饿,是否唤醒,自旋次数,锁的当前状态
    starving := false;awoke := false;iter := 0;old := m.state
    //进入死循环,直到获得锁成功(获得锁成功就是有别的协程释放锁了)
    for {
        //这个if的核心逻辑是判断:已经获得锁了并且不是饥饿模式 && 可以自旋,与cpu核数有关
    	if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
               //这个是判断:没有被唤醒 && 有排队等待的协程 && 尝试设置通知被唤醒
    		if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 && atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
               //说明上个协程此时已经unlock了,唤醒当前协程
    			awoke = true
    		}
            //自旋一段时间
    		runtime_doSpin()
            //自选次数加1
    		iter++
    		old = m.state
    		continue
    	}
    }
            
    

    第三部分代码,判断各种状态,特殊情况处理

    new := old
     //1:原协程已经unlock了,对new的修改为已锁
    if old&mutexStarving == 0 { 
    	new |= mutexLocked
    }
    //2:这里是执行完自旋或者没执行自旋(原协程没有unlock)
    if old&(mutexLocked|mutexStarving) != 0 {
    	new += 1 << mutexWaiterShift //排队
    }
    //3:如果是饥饿模式,并且已锁的状态
    if starving && old&mutexLocked != 0 {
    	new |= mutexStarving //设置new为饥饿状态
    }
     //4:上面的awoke被设置为true
    if awoke {
        //当前协程被唤醒了,肯定不为0
        if new&mutexWoken == 0 {
    	    throw("sync: inconsistent mutex state")
        }
        //既然当前协程被唤醒了,重置唤醒标志为0
        new &^= mutexWoken
    }
    //修改state的值为new,但这里new的值会有四种情况,
    //就是上面4个if情况对new做的修改,这一步获取锁成功
    if atomic.CompareAndSwapInt32(&m.state, old, new) {
    	if old&(mutexLocked|mutexStarving) == 0 {
            //这里代表的是正常模式获取锁成功
            break 
    	}
        //下面的代码是判断是否从饥饿模式恢复正常模式 
    	queueLifo := waitStartTime != 0
    	if waitStartTime == 0 {
    		waitStartTime = runtime_nanotime()
    	}
       //进入阻塞状态  
    	runtime_SemacquireMutex(&m.sema, queueLifo)
       //设置是否为饥饿模式,等待的时间大于1ms就是饥饿模式  
    	starving=starving||runtime_nanotime()-waitStartTime> starvationThresholdNs
    	old = m.state
        //如果当前锁是饥饿模式,但这个gorouting被唤醒
    	if old&mutexStarving != 0 {
    		if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {
    					throw("sync: inconsistent mutex state")
    		}
           //减去当前锁的排队
    		delta := int32(mutexLocked - 1<<mutexWaiterShift)
    		if !starving || old>>mutexWaiterShift == 1 {
                //退出饥饿模式
    			delta -= mutexStarving
    		}
            //修改状态,终止  
    		atomic.AddInt32(&m.state, delta)
    			break
    		}
        }    
        //设置被唤醒  
    	awoke = true
    	iter = 0
    } else {
    	old = m.state
    }
    
    

    Lock的源码我们弄明白了,那么Unlock呢,大家看代码的时候最好Lock和Unlock结合一起来看,因为他们是对同一变量state在操作

    func (m *Mutex) Unlock() {
       //释放锁
       new := atomic.AddInt32(&m.state, -mutexLocked)
       if (new+mutexLocked)&mutexLocked == 0 {
          throw("sync: unlock of unlocked mutex")
       }
       //判断当前锁是否饥饿模式,==0代表不是
       if new&mutexStarving == 0 {
          old := new
          for {
             //如果没有未排队的协程 或者 有已经被唤醒,得到锁或饥饿的协程,则直接返回
             if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
                return
             }
             //唤醒其它协程
             new = (old - 1<<mutexWaiterShift) | mutexWoken
             if atomic.CompareAndSwapInt32(&m.state, old, new) {
                runtime_Semrelease(&m.sema, false)
                return
             }
             old = m.state
          }
       } else {
          //释放信号量
          runtime_Semrelease(&m.sema, true)
       }
    }
    

    到这里整个Mutex的源码分析完成,可以看到Metux的源码并不是很复杂,只是各种位运算让开发人员难以直接观察到结果值,另外阅读源码前一定要先明白各个变量和常量的含义,不然读起来非常费劲。

    ![](https://img2018.cnblogs.com/blog/706455/202001/706455-20200113092119426-247247567.jpg)

  • 相关阅读:
    node-red 使用 创建第一个流程
    node-red 安装
    docker postgres 导出导入数据
    6大设计模式(转)
    常见的算法
    @Autowired与@Resource的区别
    Elasticsearch
    redis搭建主从复用-读写分离
    转载redis持久化的几种方式
    后台启动mysql
  • 原文地址:https://www.cnblogs.com/sy270321/p/12185702.html
Copyright © 2011-2022 走看看