zoukankan      html  css  js  c++  java
  • poj4323 最短编辑距离

    AGTC
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 12240   Accepted: 4594

    Description

    Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:

    • Deletion: a letter in x is missing in y at a corresponding position.
    • Insertion: a letter in y is missing in x at a corresponding position.
    • Change: letters at corresponding positions are distinct

    Certainly, we would like to minimize the number of all possible operations.

    Illustration
    A G T A A G T * A G G C
    
    | | |       |   |   | |
    
    A G T * C * T G A C G C
    Deletion: * in the bottom line
    Insertion: * in the top line
    Change: when the letters at the top and bottom are distinct

    This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

    A  G  T  A  A  G  T  A  G  G  C
    
    |  |  |        |     |     |  |
    
    A  G  T  C  T  G  *  A  C  G  C

    and 4 moves would be required (3 changes and 1 deletion).

    In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥ m.

    Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

    Write a program that would minimize the number of possible operations to transform any string x into a string y.

    Input

    The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

    Output

    An integer representing the minimum number of possible operations to transform any string x into a string y.

    Sample Input

    10 AGTCTGACGC
    11 AGTAAGTAGGC

    Sample Output

    4

    Source

    这道题是典型的DP问题最短编辑距离。
    其状态转移方程为
    1. #include <stdio.h>  
    2. #define MAXN 1024  
    3. int dp[MAXN][MAXN];  
    4. char str1[MAXN],str2[MAXN];  
    5. int min3(int a,int b,int c){  
    6.     int min=a;  
    7.     if(min>b) min=b;  
    8.     if(min>c) min=c;  
    9.     return min;  
    10. }  
    11.    
    12. int main()  
    13. {  
    14.      int n,m;  
    15.       while(scanf("%d%s",&n,str1)!=EOF){  
    16.         scanf("%d%s",&m,str2);  
    17.         for(int i=0;i<=n;i++)  
    18.             dp[i][0]=i;  
    19.         for(int j=0;j<=m;j++)  
    20.             dp[0][j]=j;  
    21.               
    22.         int count;  
    23.         for(int i=1;i<=n;i++){  
    24.             for(int j=1;j<=m;j++){  
    25.                 str1[i-1]==str2[j-1]?count=0:count=1;  
    26.                 dp[i][j]=min3(dp[i-1][j-1]+count,dp[i-1][j]+1,dp[i][j-1]+1);  
    27.             }  
    28.         }  
    29.         printf("%d ",dp[n][m]);  
    30.     }  
    31.     return 0;  
    32. }  

    http://bbs.bxzc123.com/forum.php?mod=viewthread&tid=244545
    http://bbs.bxzc123.com/forum.php?mod=viewthread&tid=244541
    http://bbs.bxzc123.com/forum.php?mod=viewthread&tid=244538
    http://bbs.bxzc123.com/forum.php?mod=viewthread&tid=244527
    http://bbs.bxzc123.com/forum.php?mod=viewthread&tid=244528
    http://bbs.bxzc123.com/forum.php?mod=viewthread&tid=244529
    http://bbs.bxzc123.com/forum.php?mod=viewthread&tid=244530

  • 相关阅读:
    Ubuntu 安装和使用 Supervisor(进程管理)
    Ubuntu查看端口占用及关闭
    Ubuntu 上安装 SQL Server 并创建数据库
    Kafka常用命令
    sql bug
    TiDB之PCTP(数据库专家)
    04 MySQL之函数
    05 MySQL之查询、插入、更新与删除
    03 MySQL之数据类型和运算符
    06 MySQL之索引
  • 原文地址:https://www.cnblogs.com/sy646et/p/7266041.html
Copyright © 2011-2022 走看看