zoukankan      html  css  js  c++  java
  • POJ 1458 Common Subsequence

    Description:

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input:

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output:

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output 

    4
    2
    0
    题意:多组测试实例,每组两个字符串,求出两个字符串最大的一一对应的相等字符的数目(最长公共子序列的长度)。
    例如abcfbc 和 abfcab: 它们的最长公共子序列是abfc或abfb,那么它们的最长公共子序列的长度为4

    a b c f b c
    a 1 1 1 1 1 1
    b 1 2 2 2 2 2
    f 1 2 2 3 3 3
    c 1 2 3 3 3 4
    a 1 2 3 3 3 4
    b 1 2 3 3 4 4


    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    
    const int N=1010;
    
    int dp[N][N];
    
    int main ()
    {
        int i, j, m, n;
        char a[N], b[N];
    
        while (scanf("%s %s", a, b) != EOF)
        {
            m = strlen(a);
            n = strlen(b);
            memset(dp, 0, sizeof(dp));
    
            for (i = 1; i <= m; i++)
            {
                for (j = 1; j <= n; j++)
                {
                    if (a[i-1] == b[j-1])
                        dp[i][j] = dp[i-1][j-1] + 1;
                    else
                        dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
    
            printf("%d
    ", dp[m][n]);
        }
    
        return 0;
    }
  • 相关阅读:
    js函数柯理化
    Promise异步编程解决方案
    set和map结构,class类
    原创:用node.js搭建本地服务模拟接口访问实现数据模拟
    原创:微信小程序如何使用自定义组件
    原创:微信小程序开发要点总结
    Nodejs CMS——基于 NestJS/NuxtJS 的完整开源项目
    浅谈js对象之数据属性、访问器属性、Object.defineProperty方法
    Promise初步详解(resolve,reject,catch)
    原生js面向对象实现简单轮播
  • 原文地址:https://www.cnblogs.com/syhandll/p/4732783.html
Copyright © 2011-2022 走看看