清华OJ——数据结构与算法实验(中国石油大学)
范围查询(Range)
Descriptioin
Let S be a set of n integral points on the x-axis. For each given interval [a, b], you are asked to count the points lying inside.
Input
The first line contains two integers: n (size of S) and m (the number of queries).
The second line enumerates all the n points in S.
Each of the following m lines consists of two integers a and b and defines an query interval [a, b].
Output
The number of points in S lying inside each of the m query intervals.
Example
Input
5 2
1 3 7 9 11
4 6
7 12
Output
0
3
Restrictions
0 <= n, m <= 5 * 10^5
For each query interval [a, b], it is guaranteed that a <= b.
Points in S are distinct from each other.
Coordinates of each point as well as the query interval boundaries a and b are non-negative integers not greater than 10^7.
Time: 2 sec
Memory: 256 MB
描述
数轴上有n个点,对于任一闭区间 [a, b],试计算落在其内的点数。
输入
第一行包括两个整数:点的总数n,查询的次数m。
第二行包含n个数,为各个点的坐标。
以下m行,各包含两个整数:查询区间的左、右边界a和b。
输出
对每次查询,输出落在闭区间[a, b]内点的个数。
样例
见英文题面
限制
0 ≤ n, m ≤ 5×105
对于每次查询的区间[a, b],都有a ≤ b
各点的坐标互异
各点的坐标、查询区间的边界a、b,均为不超过10^7的非负整数
时间:2 sec
内存:256 MB
1 #include<cstdio> 2 using namespace std; 3 typedef long long ll; 4 const int N=1e7+10; 5 int a[N]; 6 int main() 7 { 8 int n,m,now; 9 int maxx=0; 10 scanf("%d%d",&n,&m); 11 for(int i=0;i<n;i++) 12 { 13 scanf("%d",&now); 14 a[now]=1; 15 } 16 for(int i=1;i<N;i++) 17 { 18 a[i]=a[i-1]+a[i]; 19 } 20 for(int i=0;i<m;i++) 21 { 22 int x,y; 23 scanf("%d%d",&x,&y); 24 printf("%d\n",a[y]-a[x-1]); 25 } 26 return 0; 27 }