问题描述
俄罗斯方块是俄罗斯人阿列克谢·帕基特诺夫发明的一款休闲游戏。
游戏在一个15行10列的方格图上进行,方格图上的每一个格子可能已经放置了方块,或者没有放置方块。每一轮,都会有一个新的由4个小方块组成的板块从方格图的上方落下,玩家可以操作板块左右移动放到合适的位置,当板块中某一个方块的下边缘与方格图上的方块上边缘重合或者达到下边界时,板块不再移动,如果此时方格图的某一行全放满了方块,则该行被消除并得分。
在这个问题中,你需要写一个程序来模拟板块下落,你不需要处理玩家的操作,也不需要处理消行和得分。
具体的,给定一个初始的方格图,以及一个板块的形状和它下落的初始位置,你要给出最终的方格图。
游戏在一个15行10列的方格图上进行,方格图上的每一个格子可能已经放置了方块,或者没有放置方块。每一轮,都会有一个新的由4个小方块组成的板块从方格图的上方落下,玩家可以操作板块左右移动放到合适的位置,当板块中某一个方块的下边缘与方格图上的方块上边缘重合或者达到下边界时,板块不再移动,如果此时方格图的某一行全放满了方块,则该行被消除并得分。
在这个问题中,你需要写一个程序来模拟板块下落,你不需要处理玩家的操作,也不需要处理消行和得分。
具体的,给定一个初始的方格图,以及一个板块的形状和它下落的初始位置,你要给出最终的方格图。
输入格式
输入的前15行包含初始的方格图,每行包含10个数字,相邻的数字用空格分隔。如果一个数字是0,表示对应的方格中没有方块,如果数字是1,则表示初始的时候有方块。输入保证前4行中的数字都是0。
输入的第16至第19行包含新加入的板块的形状,每行包含4个数字,组成了板块图案,同样0表示没方块,1表示有方块。输入保证板块的图案中正好包含4个方块,且4个方块是连在一起的(准确的说,4个方块是四连通的,即给定的板块是俄罗斯方块的标准板块)。
第20行包含一个1到7之间的整数,表示板块图案最左边开始的时候是在方格图的哪一列中。注意,这里的板块图案指的是16至19行所输入的板块图案,如果板块图案的最左边一列全是0,则它的左边和实际所表示的板块的左边是不一致的(见样例)
输入的第16至第19行包含新加入的板块的形状,每行包含4个数字,组成了板块图案,同样0表示没方块,1表示有方块。输入保证板块的图案中正好包含4个方块,且4个方块是连在一起的(准确的说,4个方块是四连通的,即给定的板块是俄罗斯方块的标准板块)。
第20行包含一个1到7之间的整数,表示板块图案最左边开始的时候是在方格图的哪一列中。注意,这里的板块图案指的是16至19行所输入的板块图案,如果板块图案的最左边一列全是0,则它的左边和实际所表示的板块的左边是不一致的(见样例)
输出格式
输出15行,每行10个数字,相邻的数字之间用一个空格分隔,表示板块下落后的方格图。注意,你不需要处理最终的消行。
样例输入
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0 0 0
0 0 0 0
0 1 1 1
0 0 0 1
0 0 0 0
3
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0 0 0
0 0 0 0
0 1 1 1
0 0 0 1
0 0 0 0
3
样例输出
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 0 0 0 0
解题思路:这道题很容易就去根据所给的测试用例找规律,最后找到了规律发现只适用于这个用例,( ╯□╰ ),抛开用例来捋一下思路。
首先会初始化一个面板用于存储每个格子里是否已经放置了方格,用一个二维数组来存储。
接下来我们可以建立一个坐标系,如图所示:
这样的话就不用记录掉落下的方块的所有内容了,而是只需要记录其有方格的点坐标,记录完以后再根据掉落位置转换为整个面板的坐标。
根据其位置关系判断是否让其继续落下或停止,具体掉落过程见代码。
#include<iostream> using namespace std; //用于存储掉落方块的点的位置 struct point{ int x; int y; }pt[4]; int panel[15][10]; //row,col为面板大小,mrow,mcow为掉落块大小,pic为掉落块为1的数量,定义这方便修改 const int row = 15, col = 10, mrow = 4, mcol = 4,pic=4; int main() { //输入初始图 for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { cin >> panel[i][j]; } } //将掉落方块值为1的坐标存储起来 int c; int b = 0; for (int i = 0; i < mrow; i++) { for (int j = 0; j < mcol; j++) { cin >> c; if (c == 1) { pt[b].y = i; pt[b++].x = j; } } } //从第几行开始的 int begin; cin >> begin; //将掉落方块的坐标对应成整个面板的列号 for (int i = 0; i < pic; i++) pt[i].x += (begin - 1); //将掉落的方块开始下降 for (int i = 0; i < 15; i++) { //任意一块到达底端的时候停止 if (pt[0].y == 14 || pt[1].y == 14 || pt[2].y == 14 || pt[3].y == 14) { //将整个面板对应位置的值变成1 for (int j = 0; j < pic; j++) { panel[pt[j].y][pt[j].x] = 1; } break; } //任意一块的下方为1的时候停止下落,对面板内容的判断 if (panel[pt[0].y + 1][pt[0].x] == 1 || panel[pt[1].y + 1][pt[1].x] == 1 || panel[pt[2].y + 1][pt[2].x] == 1 || panel[pt[3].y + 1][pt[3].x] == 1) { for (int j = 0; j < pic; j++) { panel[pt[j].y][pt[j].x] = 1; } break; } else { //下降一行 for (int j = 0; j < pic; j++) { pt[j].y++; } } } //输出最后面板最终元素 for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { if (j != 0) cout << " "; cout << panel[i][j]; } cout << endl; } system("pause"); return 0; }