zoukankan      html  css  js  c++  java
  • 蒟蒻已知的高能数学公式

    1. 平面内坐标旋转公式:

    x1=cos(θ)*x-sin(θ)*y;

    y1=sis(θ)*x+cos(θ)*y;

    其中 x , y 表示物体相对于旋转点旋转 θ 的角度之前的坐标,

     x1 , y1 表示物体相对于旋转点旋转 θ 后的坐标。

    2. 已知两点 (tx,ty)与(x,y),求经过这两点的抛物线(形式为 y=ax2+bx):

    double a=(y*tx-ty*x)/(x*x*tx-tx*tx*x);//求参数a

    double b=(y-x*x*a)/x;//将a代入求参数b

    这个应该很好证吧:ty=a*tx*tx+b*tx;  y=a*x*x+b*x;

     然后:ty*x=x*a*tx*tx+x*b*tx;······(1) y*tx=tx*a*x*x+tx*b*x;······(2)

        则:(1)-(2),得 ty*x-y*tx=a(x*tx*tx-x*x*tx); -->a=(ty*x-y*tx)/(x*tx*tx-x*x*tx);  b=ty/tx-a*tx;

     类似的也能写出经过三个点的抛物线(形式为 y=ax2+bx+c),这里就不列举了)

  • 相关阅读:
    Sqli-labs less 25a
    Sqli-labs less 26
    Sqli-labs less 26a
    Sqli-labs less 27
    Sqli-labs less 27a
    Sqli-labs less 28
    Sqli-labs less 28a
    Python3之sys模块
    Python3之os模块
    Python3之XML模块
  • 原文地址:https://www.cnblogs.com/t-s-y/p/11326307.html
Copyright © 2011-2022 走看看