zoukankan      html  css  js  c++  java
  • Buuctf-RSA1

    p = 8637633767257008567099653486541091171320491509433615447539162437911244175885667806398411790524083553445158113502227745206205327690939504032994699902053229 
    q = 12640674973996472769176047937170883420927050821480010581593137135372473880595613737337630629752577346147039284030082593490776630572584959954205336880228469 
    dp = 6500795702216834621109042351193261530650043841056252930930949663358625016881832840728066026150264693076109354874099841380454881716097778307268116910582929 
    dq = 783472263673553449019532580386470672380574033551303889137911760438881683674556098098256795673512201963002175438762767516968043599582527539160811120550041 
    c = 24722305403887382073567316467649080662631552905960229399079107995602154418176056335800638887527614164073530437657085079676157350205351945222989351316076486573599576041978339872265925062764318536089007310270278526159678937431903862892400747915525118983959970607934142974736675784325993445942031372107342103852

    RSA中已知dq,dp的计算m步骤(dp=dmod(p-1),dq=dmod(q-1)):
    (1).计算q模p的逆元I;
    (2).计算m1=(c^dp)modp;
    (3).计算m2=(c^dq)modq;
    (4).m=(((m1-m2)*I)modp)*q+m2;

    在导入完 gmpy2模块后就可以开始使用了.
    gmpy2.invert(q,p) :q mod p 的逆元
    pow(a,b,c) : a的b次方再对c取余

    脚本

    import gmpy2
    p = 8637633767257008567099653486541091171320491509433615447539162437911244175885667806398411790524083553445158113502227745206205327690939504032994699902053229
    q = 12640674973996472769176047937170883420927050821480010581593137135372473880595613737337630629752577346147039284030082593490776630572584959954205336880228469
    dp = 6500795702216834621109042351193261530650043841056252930930949663358625016881832840728066026150264693076109354874099841380454881716097778307268116910582929
    dq = 783472263673553449019532580386470672380574033551303889137911760438881683674556098098256795673512201963002175438762767516968043599582527539160811120550041
    c = 24722305403887382073567316467649080662631552905960229399079107995602154418176056335800638887527614164073530437657085079676157350205351945222989351316076486573599576041978339872265925062764318536089007310270278526159678937431903862892400747915525118983959970607934142974736675784325993445942031372107342103852
    I = gmpy2.invert(q,p)
    m1 = pow(c,dp,p)
    m2 = pow(c,dq,q)
    m = (((m1-m2)*I)%p)*q+m2
    print(m)                               #10进制明文
    print(hex(m)[2:])                      #16进制明文
    print(bytes.fromhex(hex(m)[2:]))       #16进制转文本

     
     
  • 相关阅读:
    多任务顺序执行解决方案
    数码摄影学习总结
    ASP.NET Core与RESTful API 开发实战(二)
    通过三点求圆心程序(二维和三维两种方式),代码为ABB机器人程序,其他语言也适用
    ABB机器人选项611-1 Path Recovery使用记录
    C#刷新chart控件方法及task的启停功能记录
    ABB机器人输送链跟踪问题记录
    有关C#跨线程操作控件的委托方法
    c#get、set属性及类的继承
    正则表达式学习记录
  • 原文地址:https://www.cnblogs.com/tac2664/p/14698122.html
Copyright © 2011-2022 走看看