zoukankan      html  css  js  c++  java
  • 十分钟掌握pandas(pandas官方文档翻译)

    十分钟掌握pandas

    文档版本:0.20.3

    这是一个对pandas简短的介绍,适合新用户。你可以在Cookbook中查看更详细的内容。 
    通常,我们要像下面一样导入一些包。

    In [1]: import pandas as pd
    
    In [2]: import numpy as np
    
    In [3]: import matplotlib.pyplot as plt

    创建对象

    用一个包含值的序列创建一个Series,pandas会创建一个默认的整数索引

    In [4]: s = pd.Series([1,3,5,np.nan,6,8])
    In [5]: s
    Out[5]: 
    0    1.0
    1    3.0
    2    5.0
    3    NaN
    4    6.0
    5    8.0
    dtype: float64

    用numpy数值创建一个带有datetime索引和列标签的数据框

    In [6]: dates = pd.date_range('20130101', periods=6)
    
    In [7]: dates
    Out[7]: 
    DatetimeIndex(['2013-01-01', '2013-01-02',
                   '2013-01-03', '2013-01-04',
                   '2013-01-05','2013-01-06'],
                    dtype='datetime64[ns]', freq='D')
    
    In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
    
    In [9]: df
    Out[9]: 
                     A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988
    

    用包含对象的字典创建一个数据框,该方法与创建Series的方法相似。

    In [10]: df2 = pd.DataFrame({ 'A' : 1.,
        ....:                      'B' : pd.Timestamp('20130102'),
        ....:                      'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
        ....:                      'D' : np.array([3] * 4,dtype='int32'),
        ....:                      'E' : pd.Categorical(["test","train","test","train"]),
        ....:                      'F' : 'foo' })
        ....: 
    
    In [11]: df2
    Out[11]: 
            A          B    C  D      E    F
        0  1.0 2013-01-02  1.0  3   test  foo
        1  1.0 2013-01-02  1.0  3  train  foo
        2  1.0 2013-01-02  1.0  3   test  foo
        3  1.0 2013-01-02  1.0  3  train  foo

    该数据框有特殊的dtypes

    In [12]: df2.dtypes
    Out[12]: 
    A           float64
    B    datetime64[ns]
    C           float32
    D             int32
    E          category
    F            object
    dtype: object

    如果你是使用IPython,tab键可以自动激活可选列名(包括其它的属性)。下边就有一个可以被实现的属性的集合。

    In [13]: df2.<TAB>
    df2.A                  df2.bool
    df2.abs                df2.boxplot
    df2.add                df2.C
    df2.add_prefix         df2.clip
    df2.add_suffix         df2.clip_lower
    df2.align              df2.clip_upper
    df2.all                df2.columns
    df2.any                df2.combine
    df2.append             df2.combine_first
    df2.apply              df2.compound
    df2.applymap           df2.consolidate
    df2.as_blocks          df2.convert_objects
    df2.asfreq             df2.copy
    df2.as_matrix          df2.corr
    df2.astype             df2.corrwith
    df2.at                 df2.count
    df2.at_time            df2.cov
    df2.axes               df2.cummax
    df2.B                  df2.cummin
    df2.between_time       df2.cumprod
    df2.bfill              df2.cumsum
    df2.blocks             df2.D

    就像你所见到的列A,B,C和D的自动弹出都可以由tab完成。列E也是一样的;剩下的属性为了简短起见都省略了。

    查看数据

    查看整个数据的头部或尾部

    In [14]: df.head()
    Out[14]: 
                     A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    
    In [15]: df.tail(3)
    Out[15]: 
                   A         B         C         D
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988

    显示数据框的索引,列名和值。

    In [16]: df.index
    Out[16]: 
    DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
                '2013-01-05', '2013-01-06'],
                dtype='datetime64[ns]', freq='D')
    
    In [17]: df.columns
    Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')
    
    In [18]: df.values
    Out[18]: 
    array([[ 0.4691, -0.2829, -1.5091, -1.1356],
       [ 1.2121, -0.1732,  0.1192, -1.0442],
       [-0.8618, -2.1046, -0.4949,  1.0718],
       [ 0.7216, -0.7068, -1.0396,  0.2719],
       [-0.425 ,  0.567 ,  0.2762, -1.0874],
       [-0.6737,  0.1136, -1.4784,  0.525 ]])
    

    描述性显示关于数据的简短统计摘要

    In [19]: df.describe()
    Out[19]: 
                A         B         C         D
    count  6.000000  6.000000  6.000000  6.000000
    mean   0.073711 -0.431125 -0.687758 -0.233103
    std    0.843157  0.922818  0.779887  0.973118
    min   -0.861849 -2.104569 -1.509059 -1.135632
    25%   -0.611510 -0.600794 -1.368714 -1.076610
    50%    0.022070 -0.228039 -0.767252 -0.386188
    75%    0.658444  0.041933 -0.034326  0.461706
    max    1.212112  0.567020  0.276232  1.071804

    转置数据

    In [20]: df.T
    Out[20]: 
            2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
        A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
        B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
        C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
        D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

    通过轴来分类你的数据(相当于排序,axis=1可以理解为分类列名,=0则为索引名)

    In [21]: df.sort_index(axis=1, ascending=False)
    Out[21]: 
                     D         C         B         A
    2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
    2013-01-02 -1.044236  0.119209 -0.173215  1.212112
    2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
    2013-01-04  0.271860 -1.039575 -0.706771  0.721555
    2013-01-05 -1.087401  0.276232  0.567020 -0.424972
    2013-01-06  0.524988 -1.478427  0.113648 -0.673690

    通过值来分类

    In [22]: df.sort_values(by='B')
    Out[22]: 
                     A         B         C         D
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401

    选择数据

    小记:对于选择数据和设置数据来说,标准的python和numpy表达式非常直观而且对于交互式 
    工作来说很难进行的,对于应用性代码来说,我们比较推荐最优化的pandas数据获取方法, 
    例如.at, .iat, .loc, .iloc and .ix。

    获取

    在方括号中输入这个单一的列名,来获得一个Series,该操作相当于df.A

    In [23]: df['A']
    Out[23]: 
    2013-01-01    0.469112
    2013-01-02    1.212112
    2013-01-03   -0.861849
    2013-01-04    0.721555
    2013-01-05   -0.424972
    2013-01-06   -0.673690
    Freq: D, Name: A, dtype: float64

    通过对行切片来获取数据

    In [24]: df[0:3]
    Out[24]: 
                   A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    
    In [25]: df['20130102':'20130104']
    Out[25]: 
                   A         B         C         D
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860

    由标签获取数据

    用标签来截取一行数据

    In [26]: df.loc[dates[0]]
    Out[26]: 
    A    0.469112
    B   -0.282863
    C   -1.509059
    D   -1.135632
    Name: 2013-01-01 00:00:00, dtype: float64

    在多个轴上通过标签来选取数据

    In [27]: df.loc[:,['A','B']]
    Out[27]: 
                   A         B
    2013-01-01  0.469112 -0.282863
    2013-01-02  1.212112 -0.173215
    2013-01-03 -0.861849 -2.104569
    2013-01-04  0.721555 -0.706771
    2013-01-05 -0.424972  0.567020
    2013-01-06 -0.673690  0.113648

    同时用标签切片和标签名索引来获取数据

    In [28]: df.loc['20130102':'20130104',['A','B']]
    Out[28]: 
                   A         B
    2013-01-02  1.212112 -0.173215
    2013-01-03 -0.861849 -2.104569
    2013-01-04  0.721555 -0.706771

    对返回的对象的维度进行减少维度

    In [29]: df.loc['20130102',['A','B']]
    Out[29]: 
    A    1.212112
    B   -0.173215
    Name: 2013-01-02 00:00:00, dtype: float64

    仅仅获取标量值的方法

    In [30]: df.loc[dates[0],'A']
    Out[30]: 0.46911229990718628

    更快地获取标量值(效果相当于前一个方法)

    In [31]: df.at[dates[0],'A']
    Out[31]: 0.46911229990718628

    通过位置进行索引

    通过适合的整数来代表位置进行索引

    In [32]: df.iloc[3]
    Out[32]: 
    A    0.721555
    B   -0.706771
    C   -1.039575
    D    0.271860
    Name: 2013-01-04 00:00:00, dtype: float64
    

    与numpy/python相似的操作,整数切片来获取数据

    In [33]: df.iloc[3:5,0:2]
    Out[33]: 
                   A         B
    2013-01-04  0.721555 -0.706771
    2013-01-05 -0.424972  0.567020

    通过含有代表位置的整数列表来获取数据,与numpy/python的风格相似

    In [34]: df.iloc[[1,2,4],[0,2]]
    Out[34]: 
                   A         C
    2013-01-02  1.212112  0.119209
    2013-01-03 -0.861849 -0.494929
    2013-01-05 -0.424972  0.276232

    显式切片索引行

    In [35]: df.iloc[1:3,:]
    Out[35]: 
                   A         B         C         D
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

    显式切片索引列

    In [36]: df.iloc[:,1:3]
    Out[36]: 
                   B         C
    2013-01-01 -0.282863 -1.509059
    2013-01-02 -0.173215  0.119209
    2013-01-03 -2.104569 -0.494929
    2013-01-04 -0.706771 -1.039575
    2013-01-05  0.567020  0.276232
    2013-01-06  0.113648 -1.478427

    显式索引数据值

    In [37]: df.iloc[1,1]
    Out[37]: -0.17321464905330858

    使系统快速地获取标量值(结果与前一个方法相等)

    In [38]: df.iat[1,1]
    Out[38]: -0.17321464905330858

    布尔值索引

    使用单一的列的值来选取数据

    In [39]: df[df.A > 0]
    Out[39]: 
                   A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860

    从给出布尔条件的数据框来获取数据

    In [40]: df[df > 0]
    Out[40]: 
                   A         B         C         D
    2013-01-01  0.469112       NaN       NaN       NaN
    2013-01-02  1.212112       NaN  0.119209       NaN
    2013-01-03       NaN       NaN       NaN  1.071804
    2013-01-04  0.721555       NaN       NaN  0.271860
    2013-01-05       NaN  0.567020  0.276232       NaN
    2013-01-06       NaN  0.113648       NaN  0.524988

    使用isin()方法来过滤数据

    In [41]: df2 = df.copy()
    
    In [42]: df2['E'] = ['one', 'one','two','three','four','three']
    
    In [43]: df2
    Out[43]: 
                   A         B         C         D      E
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988  three
    
    In [44]: df2[df2['E'].isin(['two','four'])]
    Out[44]: 
                   A         B         C         D     E
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

    安插

    在安插新的列时通过索引值自动排列

    In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
    
    In [46]: s1
    Out[46]: 
    2013-01-02    1
    2013-01-03    2
    2013-01-04    3
    2013-01-05    4
    2013-01-06    5
    2013-01-07    6
    Freq: D, dtype: int64
    
    In [47]: df['F'] = s1

    通过标签安插值

    In [48]: df.at[dates[0],'A'] = 0

    通过位置安插值

    In [49]: df.iat[0,1] = 0

    通过分配numpy数组来安插新的列

    In [50]: df.loc[:,'D'] = np.array([5] * len(df))

    前面安插值的操作的结果

    In [51]: df
    Out[51]: 
                   A         B         C  D    F
    2013-01-01  0.000000  0.000000 -1.509059  5  NaN
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0
    2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0
    2013-01-04  0.721555 -0.706771 -1.039575  5  3.0
    2013-01-05 -0.424972  0.567020  0.276232  5  4.0
    2013-01-06 -0.673690  0.113648 -1.478427  5  5.0

    用一个where操作来安插数据

    In [52]: df2 = df.copy()
    
    In [53]: df2[df2 > 0] = -df2
    
    In [54]: df2
    Out[54]: 
                   A         B         C  D    F
    2013-01-01  0.000000  0.000000 -1.509059 -5  NaN
    2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
    2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
    2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
    2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
    2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

    缺失值

    早先的pandas使用 np.nan的值来代表缺失值。缺失值默认不会进行计算。

    重新排列索引操作允许你在指定的轴上改变/增加/删除索引。下面返回一个前面数据的复制结果

    In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
    
    In [56]: df1.loc[dates[0]:dates[1],'E'] = 1
    
    In [57]: df1
    Out[57]: 
                   A         B         C  D    F    E
    2013-01-01  0.000000  0.000000 -1.509059  5  NaN  1.0
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
    2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  NaN
    2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  NaN

    删除所有含有缺失值的行

    In [58]: df1.dropna(how='any')
    Out[58]: 
                   A         B         C  D    F    E
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0

    替换缺失值

    In [59]: df1.fillna(value=5)
    Out[59]: 
                   A         B         C  D    F    E
    2013-01-01  0.000000  0.000000 -1.509059  5  5.0  1.0
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
    2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  5.0
    2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  5.0

    通过判断缺失值来获取布尔值

    In [60]: pd.isnull(df1)
    Out[60]: 
                A      B      C      D      F      E
    2013-01-01  False  False  False  False   True  False
    2013-01-02  False  False  False  False  False  False
    2013-01-03  False  False  False  False  False   True
    2013-01-04  False  False  False  False  False   True

    运算

    统计表

    该操作一般不包含缺失值 
    呈现一个描述性的统计表

    In [61]: df.mean()
    Out[61]: 
    A   -0.004474
    B   -0.383981
    C   -0.687758
    D    5.000000
    F    3.000000
    dtype: float64

    在其他轴上进行相同的操作

    In [62]: df.mean(1)
    Out[62]: 
    2013-01-01    0.872735
    2013-01-02    1.431621
    2013-01-03    0.707731
    2013-01-04    1.395042
    2013-01-05    1.883656
    2013-01-06    1.592306
    Freq: D, dtype: float64

    对有不同的维度和需要排列的对象进行运算。另外,pandas自动沿着指定的维度进行运算。

    应用

    对数据进行函数的应用

    In [66]: df.apply(np.cumsum)
    Out[66]: 
                   A         B         C   D     F
    2013-01-01  0.000000  0.000000 -1.509059   5   NaN
    2013-01-02  1.212112 -0.173215 -1.389850  10   1.0
    2013-01-03  0.350263 -2.277784 -1.884779  15   3.0
    2013-01-04  1.071818 -2.984555 -2.924354  20   6.0
    2013-01-05  0.646846 -2.417535 -2.648122  25  10.0
    2013-01-06 -0.026844 -2.303886 -4.126549  30  15.0
    
    In [67]: df.apply(lambda x: x.max() - x.min())
    Out[67]: 
    A    2.073961
    B    2.671590
    C    1.785291
    D    0.000000
    F    4.000000
    dtype: float64

    统计值的频数

    In [68]: s = pd.Series(np.random.randint(0, 7, size=10))
    
    In [69]: s
    Out[69]: 
    0    4
    1    2
    2    1
    3    2
    4    6
    5    4
    6    4
    7    6
    8    4
    9    4
    dtype: int64
    
    In [70]: s.value_counts()
    Out[70]: 
    4    5
    6    2
    2    2
    1    1
    dtype: int64

    字符串操作

    Series拥有像对字符串集合处理方法的能力,在str属性中可以对数组的每一个元素进行便捷的操作,就像下面的一小片字段中显示的那样。

    In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
    
    In [72]: s.str.lower()
    Out[72]: 
    0       a
    1       b
    2       c
    3    aaba
    4    baca
    5     NaN
    6    caba
    7     dog
    8     cat
    dtype: object

    聚合

    组合

    pandas提供了不同的工具为了简便地用不同的方式来对索引设置逻辑和相关的代数功能结合Series,DataFrame和Panel对象,例如join/merge-type操作

    用concat()函数来连接pandas对象

    In [73]: df = pd.DataFrame(np.random.randn(10, 4))
    
    In [74]: df
    Out[74]: 
          0         1         2         3
    0 -0.548702  1.467327 -1.015962 -0.483075
    1  1.637550 -1.217659 -0.291519 -1.745505
    2 -0.263952  0.991460 -0.919069  0.266046
    3 -0.709661  1.669052  1.037882 -1.705775
    4 -0.919854 -0.042379  1.247642 -0.009920
    5  0.290213  0.495767  0.362949  1.548106
    6 -1.131345 -0.089329  0.337863 -0.945867
    7 -0.932132  1.956030  0.017587 -0.016692
    8 -0.575247  0.254161 -1.143704  0.215897
    9  1.193555 -0.077118 -0.408530 -0.862495
    
    # break it into pieces
    In [75]: pieces = [df[:3], df[3:7], df[7:]]
    
    In [76]: pd.concat(pieces)
    Out[76]: 
          0         1         2         3
    0 -0.548702  1.467327 -1.015962 -0.483075
    1  1.637550 -1.217659 -0.291519 -1.745505
    2 -0.263952  0.991460 -0.919069  0.266046
    3 -0.709661  1.669052  1.037882 -1.705775
    4 -0.919854 -0.042379  1.247642 -0.009920
    5  0.290213  0.495767  0.362949  1.548106
    6 -1.131345 -0.089329  0.337863 -0.945867
    7 -0.932132  1.956030  0.017587 -0.016692
    8 -0.575247  0.254161 -1.143704  0.215897
    9  1.193555 -0.077118 -0.408530 -0.862495

    Join

    SQL风格的聚合方式

    In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
    
    In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
    
    In [79]: left
    Out[79]: 
        key  lval
    0  foo     1
    1  foo     2
    
    In [80]: right
    Out[80]: 
        key  rval
    0  foo     4
    1  foo     5
    
    In [81]: pd.merge(left, right, on='key')
    Out[81]: 
        key  lval  rval
    0  foo     1     4
    1  foo     1     5
    2  foo     2     4
    3  foo     2     5

    该方法的另一个例子

    In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})
    
    In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})
    
    In [84]: left
    Out[84]: 
        key  lval
    0  foo     1
    1  bar     2
    
    In [85]: right
    Out[85]: 
        key  rval
    0  foo     4
    1  bar     5
    
    In [86]: pd.merge(left, right, on='key')
    Out[86]: 
         key  lval  rval
    0  foo     1     4
    1  bar     2     5

    附加

    对数据框附加行

    In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
    
    In [88]: df
    Out[88]: 
          A         B         C         D
    0  1.346061  1.511763  1.627081 -0.990582
    1 -0.441652  1.211526  0.268520  0.024580
    2 -1.577585  0.396823 -0.105381 -0.532532
    3  1.453749  1.208843 -0.080952 -0.264610
    4 -0.727965 -0.589346  0.339969 -0.693205
    5 -0.339355  0.593616  0.884345  1.591431
    6  0.141809  0.220390  0.435589  0.192451
    7 -0.096701  0.803351  1.715071 -0.708758
    
    In [89]: s = df.iloc[3]
    
    In [90]: df.append(s, ignore_index=True)
    Out[90]: 
          A         B         C         D
    0  1.346061  1.511763  1.627081 -0.990582
    1 -0.441652  1.211526  0.268520  0.024580
    2 -1.577585  0.396823 -0.105381 -0.532532
    3  1.453749  1.208843 -0.080952 -0.264610
    4 -0.727965 -0.589346  0.339969 -0.693205
    5 -0.339355  0.593616  0.884345  1.591431
    6  0.141809  0.220390  0.435589  0.192451
    7 -0.096701  0.803351  1.715071 -0.708758
    8  1.453749  1.208843 -0.080952 -0.264610

    分组运算

    在”group by”中我们提及一个操作过程,该过程涉及到一个或多个下列步骤

    • 基于一个标准分割数据到各个组中
    • 在每个组中独立地应用函数
    • 结合结果到数据结构中

      In [91]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar','foo', 'bar', 'foo', 'foo'],
                              'B' : ['one', 'one', 'two', 'three','two', 'two', 'one', 'three'],
                              'C' : np.random.randn(8),
                              'D' : np.random.randn(8)})
      
      
      In [92]: df
      Out[92]: 
          A      B         C         D
      0  foo    one -1.202872 -0.055224
      1  bar    one -1.814470  2.395985
      2  foo    two  1.018601  1.552825
      3  bar  three -0.595447  0.166599
      4  foo    two  1.395433  0.047609
      5  bar    two -0.392670 -0.136473
      6  foo    one  0.007207 -0.561757
      7  foo  three  1.928123 -1.623033

    分组然后应用sum函数到分组的结果中

    In [93]: df.groupby('A').sum()
    Out[93]: 
             C        D
    A                     
    bar -2.802588  2.42611
    foo  3.146492 -0.63958

    通过多列形式分组获得多重索引进行应用函数

    In [94]: df.groupby(['A','B']).sum()
    Out[94]: 
                  C         D
    A   B                        
    bar one   -1.814470  2.395985
    three -0.595447  0.166599
    two   -0.392670 -0.136473
    foo one   -1.195665 -0.616981
    three  1.928123 -1.623033
    two    2.414034  1.600434

    重塑

    有堆叠

    In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
    ....:                      'foo', 'foo', 'qux',     'qux'],
    ....:                     ['one', 'two', 'one',     'two',
    ....:                      'one', 'two', 'one', 'two']]))
    ....: 
    
    In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
    
    In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
    
    In [98]: df2 = df[:4]
    
    In [99]: df2
    Out[99]: 
                     A         B
    first second                    
    bar   one     0.029399 -0.542108
      two     0.282696 -0.087302
    baz   one    -1.575170  1.771208
      two     0.816482  1.100230

    stack()方法”压缩”DataFrame的列

    In [100]: stacked = df2.stack()
    
    In [101]: stacked
    Out[101]: 
    first  second   
    bar    one     A    0.029399
                   B   -0.542108
           two     A    0.282696
                   B   -0.087302
    baz    one     A   -1.575170
                   B    1.771208
           two     A    0.816482
                   B    1.100230
    dtype: float64

    对于堆叠的数据库,相反的stack()操作是unstack(),unstack()默认解除最后一个索引的堆叠状态。

    In [102]: stacked.unstack()
    Out[102]: 
                     A         B
    first second                    
    bar   one     0.029399 -0.542108
          two     0.282696 -0.087302
    baz   one    -1.575170  1.771208
          two     0.816482  1.100230
    
    In [103]: stacked.unstack(1)
    Out[103]: 
    second        one       two
    first                      
    bar   A  0.029399  0.282696
          B -0.542108 -0.087302
    baz   A -1.575170  0.816482
          B  1.771208  1.100230
    
    In [104]: stacked.unstack(0)
    Out[104]: 
    first          bar       baz
    second                      
    one    A  0.029399 -1.575170
           B -0.542108  1.771208
    two    A  0.282696  0.816482
           B -0.087302  1.100230

    数据透视表

    In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
    .....:                    'B' :     ['A', 'B', 'C'] * 4,
    .....:                    'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
    .....:                    'D' : np.random.randn(12),
    .....:                    'E' : np.random.randn(12)})
    .....: 
    
    In [106]: df
    Out[106]: 
            A  B    C         D         E
    0     one  A  foo  1.418757 -0.179666
    1     one  B  foo -1.879024  1.291836
    2     two  C  foo  0.536826 -0.009614
    3   three  A  bar  1.006160  0.392149
    4     one  B  bar -0.029716  0.264599
    5     one  C  bar -1.146178 -0.057409
    6     two  A  foo  0.100900 -1.425638
    7   three  B  foo -1.035018  1.024098
    8     one  C  foo  0.314665 -0.106062
    9     one  A  bar -0.773723  1.824375
    10    two  B  bar -1.170653  0.595974
    11  three  C  bar  0.648740  1.167115

    我们可以从这个数据中轻松地制作出数据透视表

    In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
    Out[107]: 
    C             bar       foo
    A     B                    
    one   A -0.773723  1.418757
          B -0.029716 -1.879024
          C -1.146178  0.314665
    three A  1.006160       NaN
          B       NaN -1.035018
          C  0.648740       NaN
    two   A       NaN  0.100900
          B -1.170653       NaN
          C       NaN  0.536826

    时间序列

    对于频率转换,pandas有简单、强大和高效的执行再取样操作的工具。(例如,把频率为1s的数据转化为频率为5min的数据)这种操作通常应用在金融领域,但也不限于此。

    In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
    
    In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
    
    In [110]: ts.resample('5Min').sum()
    Out[110]: 
    2012-01-01    25083
    Freq: 5T, dtype: int64

    呈现时区

    In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
    
    In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)
    
    In [113]: ts
    Out[113]: 
    2012-03-06    0.464000
    2012-03-07    0.227371
    2012-03-08   -0.496922
    2012-03-09    0.306389
    2012-03-10   -2.290613
    Freq: D, dtype: float64
    
    In [114]: ts_utc = ts.tz_localize('UTC')
    
    In [115]: ts_utc
    Out[115]: 
    2012-03-06 00:00:00+00:00    0.464000
    2012-03-07 00:00:00+00:00    0.227371
    2012-03-08 00:00:00+00:00   -0.496922
    2012-03-09 00:00:00+00:00    0.306389
    2012-03-10 00:00:00+00:00   -2.290613
    Freq: D, dtype: float64

    转换到另一个时区

    In [116]: ts_utc.tz_convert('US/Eastern')
    Out[116]: 
    2012-03-05 19:00:00-05:00    0.464000
    2012-03-06 19:00:00-05:00    0.227371
    2012-03-07 19:00:00-05:00   -0.496922
    2012-03-08 19:00:00-05:00    0.306389
    2012-03-09 19:00:00-05:00   -2.290613
    Freq: D, dtype: float64

    在时间区间内转化

    In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
    
    In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
    
    In [119]: ts
    Out[119]: 
    2012-01-31   -1.134623
    2012-02-29   -1.561819
    2012-03-31   -0.260838
    2012-04-30    0.281957
    2012-05-31    1.523962
    Freq: M, dtype: float64
    
    In [120]: ps = ts.to_period()
    
    In [121]: ps
    Out[121]: 
    2012-01   -1.134623
    2012-02   -1.561819
    2012-03   -0.260838
    2012-04    0.281957
    2012-05    1.523962
    Freq: M, dtype: float64
    
    In [122]: ps.to_timestamp()
    Out[122]: 
    2012-01-01   -1.134623
    2012-02-01   -1.561819
    2012-03-01   -0.260838
    2012-04-01    0.281957
    2012-05-01    1.523962
    Freq: MS, dtype: float64

    在时间段和时间戳之间进行转换可以使用便捷的算术函数。在下面的例子中,我们把在十一月结束的季度频率转化为在月末的九点的季度频率:

    In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
    
    In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)
    
    In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
    
    In [126]: ts.head()
    Out[126]: 
    1990-03-01 09:00   -0.902937
    1990-06-01 09:00    0.068159
    1990-09-01 09:00   -0.057873
    1990-12-01 09:00   -0.368204
    1991-03-01 09:00   -1.144073
    Freq: H, dtype: float64

    分类

    从0.15版本开始,pandas就可以在数据框内包含分类数据。

    In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
    
    • 1

    把 raw_grade转变为分类数据类型。

    In [128]: df["grade"] = df["raw_grade"].astype("category")
    
    In [129]: df["grade"]
    Out[129]: 
    0    a
    1    b
    2    b
    3    a
    4    a
    5    e
    Name: grade, dtype: category
    Categories (3, object): [a, b, e]

    将分类数据重命名为更有意义的名字。

    In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]
    
    • 1

    重新排列分类数据,同时添加缺失的分类数据。

    In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
    
    In [132]: df["grade"]
    Out[132]: 
    0    very good
    1         good
    2         good
    3    very good
    4    very good
    5     very bad
    Name: grade, dtype: category
    Categories (5, object): [very bad, bad, medium, good, very good]

    对分类数据进行排序会作用于每列而不是指定的列。

    In [133]: df.sort_values(by="grade")
    Out[133]: 
        id raw_grade      grade
    5   6         e   very bad
    1   2         b       good
    2   3         b       good
    0   1         a  very good
    3   4         a  very good
    4   5         a  very good

    对分类数据列那列进行分组也会显示出空的分类数据。

    In [134]: df.groupby("grade").size()
    Out[134]: 
    grade
    very bad     1
    bad          0
    medium       0
    good         2
    very good    3
    dtype: int64

    画图

    In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
    
    In [136]: ts = ts.cumsum()
    
    In [137]: ts.plot()
    Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x1187d7278>

    在数据框中,plot()是一个非常方便的把所有列作为标签绘制在图标上的函数。

    输入/输出数据

    CSV

    把数据输出为csv文件

    In [141]: df.to_csv('foo.csv')

    读取csv文件

    In [142]: pd.read_csv('foo.csv')

    HDF5

    写出一个HDF5存储单元

    In [143]: df.to_hdf('foo.h5','df')

    读入一个HDF5存储单元

    In [144]: pd.read_hdf('foo.h5','df')

    Excel

    写出一个excel文件

    In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

    读入一个excel文件

    In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
  • 相关阅读:
    python中的json
    vmware workstation中的NAT配置
    python内置的一些模块
    datetime
    线程池的工作过程示例
    java io read中申请读的长度与实际长度不同|RocketMQ源码
    RocketMQ集群搭建及安装rocketmq-console
    使用MAT分析JVM内存溢出
    jdbcTemplate小用总结
    Spring线程安全为何非安全,场景重现,解决安全小结
  • 原文地址:https://www.cnblogs.com/tan2810/p/10268233.html
Copyright © 2011-2022 走看看