zoukankan      html  css  js  c++  java
  • pytorch 自定义权重变量初始化




    import torch
    import torch.nn as nn
    import torch.optim as optim
    import torch.nn.functional as F
    # 定义模型
    class TheModelClass(nn.Module):
    def __init__(self):
    super(TheModelClass, self).__init__()
    self.conv1 = nn.Conv2d(3, 6, 5)
    self.pool = nn.MaxPool2d(2, 2)
    self.conv2 = nn.Conv2d(6, 16, 5)
    self.fc1 = nn.Linear(16 * 5 * 5, 120)
    self.fc2 = nn.Linear(120, 84)
    self.fc3 = nn.Linear(84, 10)

    for m in self.modules():
    if isinstance(m,nn.Conv2d):
    m.weight.data.fill_(7)

    def forward(self, x):
    x = self.pool(F.relu(self.conv1(x)))
    x = self.pool(F.relu(self.conv2(x)))
    x = x.view(-1, 16 * 5 * 5)
    x = F.relu(self.fc1(x))
    x = F.relu(self.fc2(x))
    x = self.fc3(x)
    return x

    # 初始化模型
    model = TheModelClass()

    # 初始化优化器
    optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

    # 模型自定义初始化
    for m in model.modules():
    if isinstance(m,nn.Conv2d):
    b=torch.ones(m.weight.size())*15
    b=torch.Tensor(b)
    m.weight=torch.nn.Parameter(b)
    print(m.weight)






  • 相关阅读:
    tzselect
    tzfile
    ttytype
    tty
    TRUNCATE
    true
    troff
    touch
    Open vSwitch
    Web 在线文件管理器学习笔记与总结(5)修改文件内容
  • 原文地址:https://www.cnblogs.com/tangjunjun/p/13731276.html
Copyright © 2011-2022 走看看