import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
# 定义模型
class TheModelClass(nn.Module):
def __init__(self):
super(TheModelClass, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
for m in self.modules():
if isinstance(m,nn.Conv2d):
m.weight.data.fill_(7)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 初始化模型
model = TheModelClass()
# 初始化优化器
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 模型自定义初始化
for m in model.modules():
if isinstance(m,nn.Conv2d):
b=torch.ones(m.weight.size())*15
b=torch.Tensor(b)
m.weight=torch.nn.Parameter(b)
print(m.weight)