题目:求斐波那契数列的第n项。写一个函数,输入n,求斐波那契数列的第n项。斐波那契数列的定义如下:f(0) = 0, f(1) = 1,f(n) = f(n - 1) + f(n - 2)。
测试用例:
- 功能测试(如输入3、5、10等)。
- 边界值测试(如输入0、1、2)。
- 性能测试(输入较大的数字,如40、50、100等)。
测试代码:
void test(int n, int expected){
if(fibonacci_solution1(n) == expected)
printf("test for %d in solution1 passed.
", n);
else
printf("test for %d in solution1 failed.
", n);
if(fibonacci_solution2(n) == expected)
printf("test for %d in solution2 passed.
", n);
else
printf("test for %d in solution2 failed.
", n);
if(fibonacci_solution3(n) == expected)
printf("test for %d in solution3 passed.
", n);
else
printf("test for %d in solution3 failed.
", n);
}
本题考点:
- 考查应聘者对递归、循环的理解及编码能力。
- 考查应聘者对时间复杂度的分析能力。
- 如果面试官采用的是青蛙跳台阶的问题,那么同时还在考查应聘者的数学建模能力。
代码实现:
#include <cstdio>
#include <cassert>
//=================方法一:递归==================
long long fibonacci_solution1(unsigned int n){
if(n <= 0)
return 0;
if(n == 1)
return 1;
return fibonacci_solution1(n - 1) + fibonacci_solution1(n - 2);
}
//=================方法二:循环==================
long long fibonacci_solution2(unsigned n){
int result[2] = {0, 1};
if(n < 2)
return result[n];
long long fibMinusOne = 1;
long long fibMinusTwo = 0;
long long fibN = 0;
for(unsigned int i = 2; i <= n; ++i){
fibN = fibMinusOne + fibMinusTwo;
fibMinusTwo = fibMinusOne;
fibMinusOne = fibN;
}
return fibN;
}
//=================方法三:基于矩阵乘法=============
struct Matrix2By2{
Matrix2By2(long long m00 = 0,
long long m01 = 0,
long long m10 = 0,
long long m11 = 0)
:m_00(m00), m_01(m01), m_10(m10), m_11(m11){}
long long m_00, m_01, m_10, m_11;
};
Matrix2By2 MatrixMultiply(const Matrix2By2& matrix1,
const Matrix2By2& matrix2){
return Matrix2By2(
matrix1.m_00 * matrix2.m_00 + matrix1.m_01 * matrix2.m_10,
matrix1.m_00 * matrix2.m_01 + matrix1.m_01 * matrix2.m_11,
matrix1.m_10 * matrix2.m_00 + matrix1.m_11 * matrix2.m_10,
matrix1.m_10 * matrix2.m_01 + matrix1.m_11 * matrix2.m_11
);
}
Matrix2By2 MatrixPower(unsigned int n){
assert(n > 0);
Matrix2By2 matrix;
if(n == 1){
matrix = Matrix2By2(1, 1, 1, 0);
}
else if(n % 2 == 0){
matrix = MatrixPower(n / 2);
matrix = MatrixMultiply(matrix, matrix);
}
else if(n % 2 == 1){
matrix = MatrixPower((n - 1) / 2);
matrix = MatrixMultiply(matrix, matrix);
matrix = MatrixMultiply(matrix, Matrix2By2(1, 1, 1, 0));
}
return matrix;
}
long long fibonacci_solution3(unsigned int n){
int result[2] = {0, 1};
if(n < 2)
return result[n];
Matrix2By2 PowerNMinus2 = MatrixPower(n - 1);
return PowerNMinus2.m_00;
}
int main(){
test(0, 0);
test(1, 1);
test(2, 1);
test(3, 2);
test(4, 3);
test(5, 5);
test(6, 8);
test(7, 13);
test(8, 21);
test(9, 34);
test(10, 55);
test(40, 102334155);
test(100, 3736710778780434371);
return 0;
}