zoukankan      html  css  js  c++  java
  • 记intel杯比赛中各种bug与debug【其一】:安装intel caffe

    因为intel杯创新软件比赛过程中,并没有任何记录。现在用一点时间把全过程重演一次用作记录。
    学习 pytorch 一段时间后,intel比赛突然不让用 pytoch 了,于是打算转战intel caffe。


    ArchLinux 安装intel caffe 失败

    首先安装caffe依赖,安装intel mkl,最后编译安装intel caffe

    # yaourt -S caffe-git 这句话就可以直接安装caffe,但看起来不是intel caffe
    git clone http://github.com/intel/caffe
    cd caffe
    cp Makefile.config.example Makefile.config
    nano Makefile
    make all -j4
    

    安装intel mkl时出现问题,发现其不支持arch,问题挺多不如直接安装一个ubuntu
    然后转战ubuntu,正好家里有一个旧的移动硬盘
    云备份数据,安装ubuntu


    Ubuntu16.04 安装intel caffe成功

    这里ubuntu的安装就不写了
    主要注意旧硬盘需要写gpt分区表,若用于efi启动,需要fat32格式的/boot/efi

    caffe安装参考:https://software.intel.com/zh-cn/articles/training-and-deploying-deep-learning-networks-with-caffe-optimized-for-intel-architecture
    一样首先安装依赖

    sudo apt-get update &&
    sudo apt-get -y install build-essential git cmake &&
    sudo apt-get -y install libprotobuf-dev libleveldb-dev libsnappy-dev &&
    sudo apt-get -y install libopencv-dev libhdf5-serial-dev protobuf-compiler &&
    sudo apt-get -y install --no-install-recommends libboost-all-dev &&
    sudo apt-get -y install libgflags-dev libgoogle-glog-dev liblmdb-dev &&
    sudo apt-get -y install libatlas-base-dev
    

    对于Ubantu16.04,链接库

    find .-type f -exec sed -i -e 's^"hdf5.h"^"hdf5/serial/hdf5.h"^g' -e 's^"hdf5_hl.h"^"hdf5/serial/hdf5_hl.h"^g' '{}' ;
    cd /usr/lib/x86_64-linux-gnu
    sudo ln -s libhdf5_serial.so.10.1.0 libhdf5.so
    sudo ln -s libhdf5_serial_hl.so.10.0.2 libhdf5_hl.so
    

    安装intel mkl
    首先免费注册申请Intel® Performance Libraries
    注册成功会受到一封邮件

    下载并按.sh安装,安装过程略了
    于是开始调整config,编译

    git clone http://github.com/intel/caffe
    cd caffe
    cp Makefile.config.example Makefile.config
    nano Makefile
    make all -j4
    

    附上Makefile.config
    主要处理mkl,python路径

    # Makefile.config
    
    # cuDNN acceleration switch (uncomment to build with cuDNN).
    # USE_CUDNN := 1
    
    # CPU-only switch (uncomment to build without GPU support).
    CPU_ONLY := 1
    
    USE_MKL2017_AS_DEFAULT_ENGINE := 1
    # or put this at the top your train_val.protoxt or solver.prototxt file:
    # engine: "MKL2017" 
    # or use this option with caffe tool:
    # -engine "MKL2017"
    
    # USE_MKLDNN_AS_DEFAULT_ENGINE := 1
    # Put this at the top your train_val.protoxt or solver.prototxt file:
    # engine: "MKLDNN" 
    # or use this option with caffe tool:
    # -engine "MKLDNN"
    
    # uncomment to disable IO dependencies and corresponding data layers
    # USE_OPENCV := 0
    # USE_LEVELDB := 0
    # USE_LMDB := 0
    
    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    #	You should not set this flag if you will be reading LMDBs with any
    #	possibility of simultaneous read and write
    # ALLOW_LMDB_NOLOCK := 1
    
    # Uncomment if you're using OpenCV 3
    # OPENCV_VERSION := 3
    
    # To customize your choice of compiler, uncomment and set the following.
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    # CUSTOM_CXX := g++
    
    # If you use Intel compiler define a path to newer boost if not used
    # already. 
    # BOOST_ROOT := 
    
    # Use remove batch norm optimization to boost inference
    DISABLE_BN_FOLDING := 0
    
    #Use conv/eltwise/relu layer fusion to boost inference.
    DISABLE_CONV_SUM_FUSION := 0
    # Intel(r) Machine Learning Scaling Library (uncomment to build
    # with MLSL for multi-node training)
    # USE_MLSL :=1
    
    # CUDA directory contains bin/ and lib/ directories that we need.
    CUDA_DIR := /usr/local/cuda
    # On Ubuntu 14.04, if cuda tools are installed via
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    # CUDA_DIR := /usr
    
    # CUDA architecture setting: going with all of them.
    # For CUDA < 6.0, comment the *_50 lines for compatibility.
    CUDA_ARCH := -gencode arch=compute_20,code=sm_20 
    	     -gencode arch=compute_20,code=sm_21 
    	     -gencode arch=compute_30,code=sm_30 
    	     -gencode arch=compute_35,code=sm_35 
    	     -gencode arch=compute_50,code=sm_50 
    	     -gencode arch=compute_50,code=compute_50
    
    # BLAS choice:
    # atlas for ATLAS (default)
    # mkl for MKL
    # open for OpenBlas
    BLAS := mkl
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    # Leave commented to accept the defaults for your choice of BLAS
    # (which should work)!
    BLAS_INCLUDE := /opt/intel/mkl/include
    BLAS_LIB := /opt/intel/mkl/lib/intel64
    
    # Homebrew puts openblas in a directory that is not on the standard search path
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    # BLAS_LIB := $(shell brew --prefix openblas)/lib
    
    # This is required only if you will compile the matlab interface.
    # MATLAB directory should contain the mex binary in /bin.
    # MATLAB_DIR := /usr/local
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app
    
    SERIAL_HDF5_INCLUDE := /usr/include/hdf5/serial/
    
    # NOTE: this is required only if you will compile the python interface.
    # We need to be able to find Python.h and numpy/arrayobject.h.
    PYTHON_INCLUDE := /usr/include/python2.7 
    		/usr/lib/python2.7/dist-packages/numpy/core/include
    # Anaconda Python distribution is quite popular. Include path:
    # Verify anaconda location, sometimes it's in root.
    # ANACONDA_HOME := $(HOME)/anaconda
    # PYTHON_INCLUDE := $(ANACONDA_HOME)/include 
    		# $(ANACONDA_HOME)/include/python2.7 
    		# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include 
    
    # Uncomment to use Python 3 (default is Python 2)
    PYTHON_LIBRARIES := boost_python3 python3.5m
    PYTHON_INCLUDE := /usr/include/python3.5m 
                     /usr/lib/python3.5/dist-packages/numpy/core/include
    
    # We need to be able to find libpythonX.X.so or .dylib.
    PYTHON_LIB := /usr/lib
    # PYTHON_LIB := $(ANACONDA_HOME)/lib
    
    # Homebrew installs numpy in a non standard path (keg only)
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib
    
    # Uncomment to support layers written in Python (will link against Python libs)
    WITH_PYTHON_LAYER := 1
    
    # Whatever else you find you need goes here.
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
    
    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    # LIBRARY_DIRS += $(shell brew --prefix)/lib
    
    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    # USE_PKG_CONFIG := 1
    
    # N.B. both build and distribute dirs are cleared on `make clean`
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute
    
    # Uncomment to enable training performance monitoring
    # PERFORMANCE_MONITORING := 1
    
    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    # DEBUG := 1
    
    # Uncomment to disable OpenMP support.
    # USE_OPENMP := 0
    
    # The ID of the GPU that 'make runtest' will use to run unit tests.
    TEST_GPUID := 0
    
    # enable pretty build (comment to see full commands)
    Q ?= @
    
    

    编译过程中会出现一些warning,然而发现并没有什么大问题
    至此intel caffe安装成功

    安装成功后
    1.注意添加export PYTHONPATH=$PYTHONPATH:=<your caffe path>/python
    不然会有如下报错

    import caffe
    #Traceback (most recent call last):
    #  File "<stdin>", line 1, in <module>
    #  File "/usr/local/lib/python3.5/dist-packages/caffe/__init__.py", line 37, in <module>
    #    from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver
    #  File "/usr/local/lib/python3.5/dist-packages/caffe/pycaffe.py", line 49, in <module>
    #    from ._caffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, 
    #ImportError: libcaffe.so.1.1.0: cannot open shared object file: No such file or directory
    
    

    2.注意使用python2.7
    如果使用python3

    import caffe
    #Traceback (most recent call last):
    #  File "<stdin>", line 1, in <module>
    #  File "/home/tanglizi/caffe/python/caffe/__init__.py", line 37, in <module>
    #    from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver
    #  File "/home/tanglizi/caffe/python/caffe/pycaffe.py", line 49, in <module>
    #    from ._caffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, 
    #ImportError: dynamic module does not define module export function (PyInit__caffe)
    
    

    3.顺便把caffe链接到/usr/bin下面,方便使用

    ln -s <your caffe path>/build/tools/caffe /usr/bin/
    
  • 相关阅读:
    第15周作业
    迟到的第14周作业
    第13周作业集
    第11次作业--字符串处理
    找回感觉的练习
    第9次作业--接口及接口回调
    20194684 + 自动生成四则运算题第一版报告
    css的calc在less文件中计算有误问题
    react 细节整理
    js async属性
  • 原文地址:https://www.cnblogs.com/tanglizi/p/8409353.html
Copyright © 2011-2022 走看看