zoukankan      html  css  js  c++  java
  • 记intel杯比赛中各种bug与debug【其二】:intel caffe的使用和大坑

    放弃使用pytorch,学习caffe
    本文仅记录个人观点,不免存在许多错误


    Caffe 学习

    caffe模型生成需要如下步骤

    • 编写network.prototxt
    • 编写solver.prototxt
    • caffe train -solver=solver.prototxt

    network.prototxt编写

    在caffe中,Net由Layer构成,其中数据由Blob进行传递
    network编写就是组织layer
    关于layer如何编写,参考caffe.proto
    这里写出layer一般形式

    layer{
        name: "layer name"
        type: "layer type"
        bottom: "bottom blob"
        top: "top blob"
        param{
            ...
        }
        include{ phase: ... }
        exclude{ phase: ... }
        # 对某一type的layer参数, 这里以内积层为例
        inner_product_param{
            num_output: 64
            weight_filler{
                type: "xavier"
            }
            bias_filler{
                type: "constant"
                value: 0
            }
            axis=1
        }
    }
    

    在这里简要说一下我们的目的,
    通过中文分词rnn和贝叶斯分类器实现一个垃圾信息处理的功能
    这里直接附上我的network好了,反正没人看: (

    # project for chinese segmentation
    #	T: 64,	batch: 64
    #	label[T*batch, 1, 1, 1]	cont[T*batch, 1, 1, 1]=0 or 1
    #	data[T*batch, 1, 1, 1] ->
    #	embed[T*batch, 2000, 1, 1](drop&reshape) -> [T, batch, 2000, 1]
    #	lstm[T, batch, 256, 1](drop) ->
    #	ip[T, batch, 64, 1](relu) ->
    #	ip[T, batch, 5, 1] ->
    #	Accuracy & SoftMaxWithLoss
    # for output: 0-none, 1-Signal, 2-Begin, 3-Middle, 4-End
    
    
    name: "Segment"
    
    # train data
    layer{
    	name: "train_data"
    	type: "HDF5Data"
    	top: "data"
    	top: "label"
    	top: "cont"
    	include{ phase: TRAIN }
    	hdf5_data_param{
    		source: "/home/tanglizi/caffe/projects/data_segment/h5_test.txt"
    		batch_size: 4096
    		shuffle: true
    	}
    }
    # test data
    layer{
    	name: "test_data"
    	type: "HDF5Data"
    	top: "data"
    	top: "label"
    	top: "cont"
    	include{ phase: TEST }
    	hdf5_data_param{
    		source: "/home/tanglizi/caffe/projects/data_segment/h5_test.txt"
    		batch_size: 4096
    		shuffle: true
    	}
    }
    
    # embed
    layer{
    	name: "embedding"
    	type: "Embed"
    	bottom: "data"
    	top: "embedding"
    	param{
    		lr_mult: 1
    	}
    	embed_param{
    		input_dim: 14000
    		num_output: 2000
    		weight_filler {
    			type: "uniform"
    			min: -0.08
    			max: 0.08
    		}
    	}
    }
    # embed-drop
    layer{
    	name: "embed-drop"
    	type: "Dropout"
    	bottom: "embedding"
    	top: "embed-drop"
    	dropout_param{
    		dropout_ratio: 0.05
    	}
    }
    
    
    # reshape
    # embed
    # [T*batch, 2000, 1, 1] ->
    # [T, batch, 2000, 1]
    layer{
    	name: "embed-reshape"
    	type: "Reshape"
    	bottom: "embed-drop"
    	top: "embed-reshaped"
    	reshape_param{
    		shape{
    			dim: 64
    			dim: 64
    			dim: 2000
    		}
    	}
    }
    
    # label
    layer{
    	name: "label-reshape"
    	type: "Reshape"
    	bottom: "label"
    	top: "label-reshaped"
    	reshape_param{
    		shape{
    			dim: 64
    			dim: 64
    			dim: 1
    		}
    	}
    }
    
    # cont
    layer{
    	name: "cont-reshape"
    	type: "Reshape"
    	bottom: "cont"
    	top: "cont-reshaped"
    	reshape_param{
    		shape{
    			dim: 64
    			dim: 64
    		}
    	}
    }
    
    
    # lstm
    layer{
    	name: "lstm"
    	type: "LSTM"
    	bottom: "embed-reshaped"
    	bottom: "cont-reshaped"
    	top: "lstm"
    	recurrent_param{
    		num_output: 256
    		weight_filler{
    			# type: "xavier"
    			type: "uniform"
    			min: -0.08
    			max: 0.08
    		}
    		bias_filler{
    			type: "constant"
    			value: 0
    		}
    	}
    }
    
    # lstm-drop
    layer{
    	name: "lstm1-drop"
    	type: "Dropout"
    	bottom: "lstm"
    	top: "lstm-drop"
    	dropout_param{
    		dropout_ratio: 0.05
    	}
    }
    
    # connect
    # ip1
    layer{
    	name: "ip1"
    	type: "InnerProduct"
    	bottom: "lstm-drop"
    	top: "ip1"
    	param{
    		lr_mult: 1
    		decay_mult: 1
    	}
    	param{
    		lr_mult: 2
    		decay_mult: 0
    	}
    	inner_product_param{
    		num_output: 64
    		weight_filler{
    			type: "xavier"
    		}
    		bias_filler{
    			type: "constant"
    			value: 0
    		}
    		axis: 2
    	}
    }
    # relu
    layer{
    	name: "relu1"
    	type: "ReLU"
    	bottom: "ip1"
    	top: "relu1"
    	relu_param{
    		negative_slope: 0
    	}
    }
    
    # ip2
    layer{
    	name: "ip2"
    	type: "InnerProduct"
    	bottom: "relu1"
    	top: "ip2"
    	param{
    		lr_mult: 1
    	}
    	param{
    		lr_mult: 2
    	}
    	inner_product_param{
    		num_output: 5
    		weight_filler{
    			type: "xavier"
    		}
    		bias_filler{
    			type: "constant"
    			value: 0
    		}
    		axis: 2
    	}
    }
    
    
    # loss
    layer{
    	name: "loss"
    	type: "SoftmaxWithLoss"
    	bottom: "ip2"
    	bottom: "label-reshaped"
    	top: "loss"
    	softmax_param{
    		axis: 2
    	}
    }
    
    # accuracy
    layer{
    	name: "accuracy"
    	type: "Accuracy"
    	bottom: "ip2"
    	bottom: "label-reshaped"
    	top: "accuracy"
    	accuracy_param{
    		axis: 2
    	}
    }
    

    solver.prototxt编写

    solver用于调整caffe训练等操作的超参数
    solver如何编写,参考caffe.proto
    附上一般写法

    net: "network.proto"
    
    test_iter: 100
    test_interval: 500
    
    type: "Adam"
    base_lr: 0.01
    weight_decay: 0.0005
    
    lr_policy: "inv"
    
    display: 100
    max_iter: 10000
    
    snapshot: 5000
    snapshot_prefix: "/home/tanglizi/caffe/projects/segment/"
    
    solver_mode: CPU
    

    训练模型

    caffe train -solver=solver.prototxt
    

    这时可能报错:
    Message type "caffe.MultiPhaseSolverParameter" has no field named "net".
    请注意不是没有net,而是其他参数设置有误
    intel caffe特有的报错


    Caffemodel 的使用

    模型训练的结果很有问题,accuracy非常低,感觉又是network写错了
    于是想看看其中发生了什么
    caffemodel可以通过c++或python matlab接口来使用
    接下来进入intel caffe 和intel devcloud大坑

    pycaffe的使用

    注意:以下python代码在devcloud进行
    首先我们知道caffe模型就是训练好的一个神经网络
    于是必然需要caffe.Net()来读取caffemodel和net.prototxt,需要caffe.io读取数据

    import caffe
    from caffe import io
    # 这时报错:
    #Traceback (most recent call last):
    #  File "<stdin>", line 1, in <module>
    #ImportError: cannot import name 'io'
    

    连忙查看caffe里面有什么

    dir(caffe)
    # 显示 ['__doc__', '__loader__', '__name__', '__package__', '__path__', '__spec__']
    # 正常显示 ['AdaDeltaSolver', 'AdaGradSolver', 'AdamSolver', 'Classifier', 'Detector', 'Layer', 'NesterovSolver',
    #  'Net', 'NetSpec', 'RMSPropSolver', 'SGDSolver', 'TEST', 'TRAIN', '__builtins__', '__doc__', '__file__', '__name__',
    #  '__package__', '__path__', '__version__', '_caffe', 'classifier', 'detector', 'get_solver', 'init_log', 'io', 'layer_type_list',
    #  'layers', 'log', 'net_spec', 'params', 'proto', 'pycaffe', 'set_device', 'set_mode_cpu', 'set_mode_gpu', 'set_random_seed', 'to_proto']
    
    

    淦,根本什么都没有
    由于我们的项目需要必须在服务器上进行,所以不考虑在本地机器上运行
    现在有两条路:重新编译一个caffe 或用c++实现
    懒得搞事情,选择c++实现

    c++中使用caffemodel

    注:以下过程使用intel caffe
    首先我们知道caffe模型就是训练好的一个神经网络
    于是必然需要caffe.Net()来读取caffemodel和net.prototxt

    // predict.cpp
    #include <caffe/caffe.hpp>
    boost::shared_ptr< Net<float> > net(new caffe::Net<float>(net, Caffe::TEST));
    
    1. 开始手动编译
        # 注意到caffe.hpp的位置,我们添加路径即可
        clang++ -I <caffe path>/include -lboost_system predict.cpp -o predict
        #不料报错
        #/tmp/predict-fea879.o: In function 'main':
        #predict.cpp:(.text+0x35b): undefined reference to 'caffe::Net<int>::Net(std::__cxx11::basic_string<char, std::char_traits<char>, 
        #std::allocator<char> > const&, caffe::Phase, int, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, 
        #std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const*,
        # caffe::Net<int> const*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)'
        #clang: error: linker command failed with exit code 1 (use -v to see invocation)
      
        # 看起来找不到libcaffe,添加路径即可
        clang++ -I <caffe path>/include -lboost_system predict.cpp -o predict -L <caffe path>/build/lib -lcaffe
        # 不料报错 错误相同
    
    1. 放弃手动编译,放在examples/下重新编译caffe
      不料报错 错误相同
    2. 放在tools/下(caffe.cpp的位置)重新编译caffe
      直接跳过跳过编译predict.cpp
      烦 放弃本地使用c++
    3. 在devcloud上手动编译
      不料报错 错误相同
      云上都编译不了我还干chua
    4. 重新编译intel caffe
      按照环境重新配置Makefile.config
      编译报错
    In file included from .build_release/src/caffe/proto/caffe.pb.cc:5:0:  
    .build_release/src/caffe/proto/caffe.pb.h:12:2: error: #error This file was generated by a newer version of protoc which is  
     #error This file was generated by a newer version of protoc which is  
    .build_release/src/caffe/proto/caffe.pb.h:13:2: error: #error incompatible with your Protocol Buffer headers. Please update  
     #error incompatible with your Protocol Buffer headers.  Please update  
    .build_release/src/caffe/proto/caffe.pb.h:14:2: error: #error your headers.  
     #error your headers.  
    .build_release/src/caffe/proto/caffe.pb.h:22:35: fatal error: google/protobuf/arena.h: No such file or directory
     #include <google/protobuf/arena.h>  
    

    查了一下,此处需要libprotoc 2.6.1,然而devcloud上libprotoc 3.2.0
    烦死了
    于是查到这个文章,在此十分感谢 @大黄老鼠 同学!!!
    好了现在完全放弃caffe了!
    转战chainer!

  • 相关阅读:
    立 Flag
    ASP.NET Core 3.0 一个 jwt 的轻量角色/用户、单个API控制的授权认证库
    C# Xamarin 数据绑定入门基础
    C# HttpClient 请求认证、数据传输笔记
    【PHP篇】输出方法
    【PHP篇】变量与常量
    C语言小笔记
    树莓派GPIO口的使用
    树莓派连接不上WiFi
    OLED屏幕详细使用(CC2530 & 51)
  • 原文地址:https://www.cnblogs.com/tanglizi/p/8410004.html
Copyright © 2011-2022 走看看