zoukankan      html  css  js  c++  java
  • tensorboard-sklearn数据-loss

    记录sklearn数据训练时的loss值,用tensorboard可视化

    三步骤:红字处

    import tensorflow as tf
    from sklearn.datasets import load_digits
    from sklearn.cross_validation import train_test_split
    from sklearn.preprocessing import LabelBinarizer
    
    # load data
    digits = load_digits()
    X = digits.data
    y = digits.target
    y = LabelBinarizer().fit_transform(y)   # 转换格式
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3)
    
    
    def add_layer(inputs, in_size, out_size, layer_name, active_function=None):
        """
        :param inputs:
        :param in_size: 行
        :param out_size: 列 , [行, 列] =矩阵
        :param active_function:
        :return:
        """
        with tf.name_scope('layer'):
            with tf.name_scope('weights'):
                W = tf.Variable(tf.random_normal([in_size, out_size]), name='W')  #
            with tf.name_scope('bias'):
                b = tf.Variable(tf.zeros([1, out_size]) + 0.1)  # b是一行数据,对应out_size列个数据
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b = tf.matmul(inputs, W) + b
            Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob=keep_prob)
            if active_function is None:
                outputs = Wx_plus_b
            else:
                outputs = active_function(Wx_plus_b)
            tf.summary.histogram(layer_name + '/outputs', outputs)  # 1.2.记录outputs值,数据直方图
            return outputs
    
    
    # define placeholder for inputs to network
    keep_prob = tf.placeholder(tf.float32)  # 不被dropout的数量
    xs = tf.placeholder(tf.float32, [None, 64])  # 8*8
    ys = tf.placeholder(tf.float32, [None, 10])
    
    # add output layer
    l1 = add_layer(xs, 64, 50, 'l1', active_function=tf.nn.tanh)
    prediction = add_layer(l1, 50, 10, 'l2', active_function=tf.nn.softmax)
    
    # the loss between prediction and really
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1]))
    tf.summary.scalar('loss', cross_entropy)  # 字符串类型的标量张量,包含一个Summaryprotobuf  1.1记录标量
    # training
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    
    sess = tf.Session()
    merged = tf.summary.merge_all()  # 2.把所有summary节点整合在一起,只需run一次,这儿只有cross_entropy
    sess.run(tf.initialize_all_variables())
    
    train_writer = tf.summary.FileWriter('log/train', sess.graph)  # 3.写入
    test_writer = tf.summary.FileWriter('log/test', sess.graph)
    
    # start training
    for i in range(500):
        sess.run(train_step, feed_dict={xs: X_train, ys: y_train, keep_prob: 0.5})  # keep_prob训练时保留50%,防止过拟合
        if i % 50 == 0:
            # record loss
            train_result = sess.run(merged, feed_dict={xs: X_train, ys: y_train, keep_prob: 1})  # 3.1 激活 tensorboard记录保留100%的数据
            test_result = sess.run(merged, feed_dict={xs: X_test, ys: y_test, keep_prob: 1})
            train_writer.add_summary(train_result, i)
            test_writer.add_summary(test_result, i)
    
    print("Record Finished !!!")
  • 相关阅读:
    Effective JavaScript: 编写高质量JavaScript代码的68个有效方法(目录)
    第 13 条:使用立即调用的函数表达式创建局部作用域
    第11条:javascript闭包(Effective JavaScript读书笔记)
    .net各类视频教程
    IIS7视频教程
    快速排序
    冒泡排序
    python骚气的写法:b = lambda i, x: (tf.compat.v1.Print(i + 1, [i]), tf.compat.v1.Print(x + 1, [i], "x:"))
    服务器要放到水下
    keras包含各种内置层
  • 原文地址:https://www.cnblogs.com/tangpg/p/9222909.html
Copyright © 2011-2022 走看看