zoukankan      html  css  js  c++  java
  • 格雷码生成算法

    在博客中看到过一次格雷码生成算法,我在这里也想写一下。

    原文中的算法为:假设已经生成了k位格雷码,那么k+1位格雷码的生成方式为(1) 按序在k位格雷码前插入一位0,生成一组编码,(2)按逆序在k位格雷码前插入一位1,生成另外一组编码,两组编码合起来就是k+1位格雷码。

    如下例:

    已有2位格雷码:00, 01, 11, 10,要生成3位格雷码,采用此算法:

    (1)按序在各码前插入0,生成000,001, 011,010;

    (2)按逆序在各码前插入1,生成110,111, 101,100;

    (3)将两组编码组合起来:000, 001, 011, 010, 110, 111, 101, 100,为3位格雷码。

    另外一种算法与此算法类似,不同的是插入的位是在格雷码的后面:

    对于k位格雷码,在各格雷码后面分别插入0, 1 或 1, 0,生成两个编码,所有插入完成后组合起来的编码为k+1位格雷码。

    如已有2位格雷码:00,01,11,10,生成3位格雷码,采用此算法:

    (1)在00编码后面分别插入0,1,生成000, 001;

    (2)在01编码后面分别插入1,0,生成011, 010;

    (3)在11编码后面分别插入0,1,生成110, 111;

    (4)在10编码后面分别插入1,0,生成101,100;

    (5)将生成的编码组合起来:000, 001, 011, 010, 110, 111, 101, 100,为3位格雷码。

    #include <iostream>
    #include <vector>
    #include <string>
    #include <time.h>
     
    void GrayCodeOne(int num);
    void GrayCodeTwo(int num);
     
    using namespace std;
     
    int main()
    {
        int count;
        cout << "Input Code Number:";
        cin >> count;
     
        cout << "Produce Gray Code using method 1" << endl;
        clock_t beginOne = clock();
        GrayCodeOne(count);
        clock_t endOne = clock();
        cout << "Gray Code First Method using time: " << (endOne - beginOne) << endl;
     
        cout << "Produce Gray Code using method 2" << endl;
        clock_t beginTwo = clock();
        GrayCodeTwo(count);
        clock_t endTwo = clock();
        cout << "Gray Code Second Method using time: " << (endTwo - beginTwo) << endl;
     
        return 0;
    }
     
     
    // Method to produce gray code using method inserting 0 in front of old gray code by positive
    // and inserting 1 in front of old gray code by nagative.
    void GrayCodeOne(int num)
    {
        if (num < 1)
        {
            cout << "Error input Integer" << endl;
            return;
        }
     
        vector<string> codeVec;
     
        int cIdx = 1;
        for (; cIdx <= num; cIdx++)
        {
            if (codeVec.size() < 2)
            {
                codeVec.push_back("0");
                codeVec.push_back("1");
            }
            else
            {
                vector<string> tranVec;
                tranVec.resize(2 * codeVec.size());
                int tranIdx = 0;
                vector<string>::iterator codeIter = codeVec.begin();
                for (; codeIter != codeVec.end(); codeIter++)
                {
                    string str = "0";
                    str.append(*codeIter);
                    tranVec[tranIdx++] = str;
                }
     
                vector<string>::reverse_iterator rCodeIter = codeVec.rbegin();
                for (; rCodeIter != codeVec.rend(); rCodeIter++)
                {
                    string str = "1";
                    str.append(*rCodeIter);
                    tranVec[tranIdx++] = str; 
                }
     
                codeVec.assign(tranVec.begin(), tranVec.end());
            }
        }
     
        //vector<string>::iterator vecIter = codeVec.begin();
        //for (; vecIter != codeVec.end(); vecIter++)
        //{
        //    cout << *vecIter << endl;
        //}
     
        return;
    }
     
     
    // Method to produce gray code using method inserting 0/1 in the back of first gray code
    // then inserting 1/0 in the back of next gray code.
    void GrayCodeTwo(int num)
    {
        if (num < 1)
        {
            cout << "Input error Integer" << endl;
            return;
        }
     
     
     
        vector<string> codeVec;
     
        int cIdx = 1;
        for (; cIdx <= num; cIdx++)
        {
            if (codeVec.size() < 2)
            {
                codeVec.push_back("0");
                codeVec.push_back("1");
            }
            else
            {
                vector<string> tranVec;
                int tranIdx = 0;
                int cIdx = codeVec.size();
     
                tranVec.resize(2 * cIdx);
                for (int vIdx = 0; vIdx < cIdx; vIdx++)
                {
                    string str = codeVec[vIdx];
                    if (0 == (vIdx % 2))
                    {
                        string str0 = str;
                        str0.append("0");
                        tranVec[tranIdx++] = str0;
     
                        string str1 = str;
                        str1.append("1");
                        tranVec[tranIdx++] = str1;
                    }
                    else
                    {
                        string str0 = str;
                        str0.append("1");
                        tranVec[tranIdx++] = str0;
     
                        string str1 = str;
                        str1.append("0");
                        tranVec[tranIdx++] = str1;
                    }
                }
     
                codeVec.assign(tranVec.begin(), tranVec.end());
            }
        }
     
        //vector<string>::iterator vecIter = codeVec.begin();
        //for (; vecIter != codeVec.end(); vecIter++)
        //{
        //    cout << *vecIter << endl;
        //}
     
        return;
    }

    运行时间的测试:

    12位格雷码,方法一和方法二所需时钟数

    16位格雷码,两种方法所需时钟数

    代码如下:
    ---------------------
    作者:aitazhixin
    来源:CSDN
    原文:https://blog.csdn.net/aitazhixin/article/details/61915679
    版权声明:本文为博主原创文章,转载请附上博文链接!

  • 相关阅读:
    京东精益敏捷教练分享:敏捷助力产品创新!
    设计规范 | 详解组件控件结构体系
    Axure响应式进阶
    通讯录表设计
    TEST1
    c#练习四单元总结
    窗体控件应用总结(1)
    .NET(c#理解)
    test2-11
    test1-1
  • 原文地址:https://www.cnblogs.com/tansuoxinweilai/p/10473535.html
Copyright © 2011-2022 走看看