zoukankan      html  css  js  c++  java
  • HashMap底层原理

    HashMap底层原理

     

    背景:因为我不知道下一辈子还是否能遇见你 所以我今生才会那么努力把最好的给你。HashMap底层原理和源码撸一遍面试不慌。

     

    一、HashMap简介

    1. HashMap是用于存储Key-Value键值对的集合;

    2. HashMap根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,So具有很快的访问速度,但遍历顺序不确定;

    3. HashMap中键key为null的记录至多只允许一条,值value为null的记录可以有多条

    4. HashMap非线程安全,即任一时刻允许多个线程同时写HashMap,可能会导致数据的不一致。

    图1. HashMap的继承

    二、HashMap底层存储结构

    从整体结构上看HashMap是由数组+链表+红黑树(JDK1.8后增加了红黑树部分)实现的。

    图2. HashMap整体存储结构

    数组:

          HashMap是一个用于存储Key-Value键值对的集合,每一个键值对也叫做一个Entry;这些Entry分散的存储在一个数组当中,该数组就是HashMap的主干。

    图3. HashMap存储Entry的数组

    链表:

          因为数组Table的长度是有限的,使用hash函数计算时可能会出现index冲突的情况,所以我们需要链表来解决冲突;数组Table的每一个元素不单纯只是一个Entry对象,它还是一个链表的头节点,每一个Entry对象通过Next指针指向下一个Entry节点;当新来的Entry映射到冲突数组位置时,只需要插入对应的链表位置即可。

    图4. HashMap链表

    index冲突例子如下:

          比如调用 hashMap.put("China", 0) ,插入一个Key为“China"的元素;这时候我们需要利用一个哈希函数来确定Entry的具体插入位置(index):通过index = Hash("China"),假定最后计算出的index是2,那么Entry的插入结果如下:

    图5. index冲突-1

    但是,因为HashMap的长度是有限的,当插入的Entry越来越多时,再完美的Hash函数也难免会出现index冲突的情况。比如下面这样:

    图6. index冲突-2

          经过hash函数计算发现即将插入的Entry的index值也为2,这样就会与之前插入的Key为“China”的Entry起冲突;这时就可以用链表来解决冲突,当新来的Entry映射到冲突的数组位置时,只需要插入到对应的链表即可;此外,新来的Entry节点插入链表时使用的是“头插法”,即会插在链表的头部,因为HashMap的发明者认为后插入的Entry被查找的概率更大。

    图7. index冲突-3

    红黑树:

    当链表长度超过阈值(8)时,会将链表转换为红黑树,使HashMap的性能得到进一步提升。

    图8. HashMap红黑树

    HashMap底层存储结构源码:

    Node<K,V>类用来实现数组及链表的数据结构:

     1    /** 数组及链表的数据结构
     2      * Basic hash bin node, used for most entries.  (See below for
     3      * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
     4      */
     5     static class Node<K,V> implements Map.Entry<K,V> {
     6         final int hash;  //保存节点的hash值
     7         final K key;  //保存节点的key值
     8         V value;  //保存节点的value值
     9        //next是指向链表结构下当前节点的next节点,红黑树TreeNode节点中也用到next
    10         Node<K,V> next;  
    11 
    12         Node(int hash, K key, V value, Node<K,V> next) {
    13             this.hash = hash;
    14             this.key = key;
    15             this.value = value;
    16             this.next = next;
    17         }
    18 
    19         public final K getKey()        { return key; }
    20         public final V getValue()      { return value; }
    21         public final String toString() { return key + "=" + value; }
    22 
    23         public final int hashCode() {
    24             return Objects.hashCode(key) ^ Objects.hashCode(value);
    25         }
    26 
    27         public final V setValue(V newValue) {
    28             V oldValue = value;
    29             value = newValue;
    30             return oldValue;
    31         }
    32 
    33         public final boolean equals(Object o) {
    34             if (o == this)
    35                 return true;
    36             if (o instanceof Map.Entry) {
    37                 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
    38                 if (Objects.equals(key, e.getKey()) &&
    39                     Objects.equals(value, e.getValue()))
    40                     return true;
    41             }
    42             return false;
    43         }
    44     }

    TreeNode<K,V>用来实现红黑树相关的存储结构:

     1    /**  继承LinkedHashMap.Entry<K,V>,红黑树相关存储结构
     2      * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     3      * extends Node) so can be used as extension of either regular or
     4      * linked node.
     5      */
     6     static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
     7         TreeNode<K,V> parent;  //存储当前节点的父节点
     8         TreeNode<K,V> left;  //存储当前节点的左孩子
     9         TreeNode<K,V> right;  //存储当前节点的右孩子
    10         TreeNode<K,V> prev;    //存储当前节点的前一个节点
    11         boolean red;  //存储当前节点的颜色(红、黑)
    12         TreeNode(int hash, K key, V val, Node<K,V> next) {
    13             super(hash, key, val, next);
    14         }
    15 
    16 public class LinkedHashMap<K,V>
    17     extends HashMap<K,V>
    18     implements Map<K,V>
    19 {
    20 
    21     /**
    22      * HashMap.Node subclass for normal LinkedHashMap entries.
    23      */
    24     static class Entry<K,V> extends HashMap.Node<K,V> {
    25         Entry<K,V> before, after;
    26         Entry(int hash, K key, V value, Node<K,V> next) {
    27             super(hash, key, value, next);
    28         }
    29     }

    三、HashMap各常量及成员变量的作用

    HashMap相关常量:

     1     /** 创建HashMap时未指定初始容量情况下的默认容量
     2      * The default initial capacity - MUST be a power of two.
     3      */
     4     static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16   1 << 4 = 16
     5 
     6     /** HashMap的最大容量
     7      * The maximum capacity, used if a higher value is implicitly specified
     8      * by either of the constructors with arguments.
     9      * MUST be a power of two <= 1<<30.
    10      */
    11     static final int MAXIMUM_CAPACITY = 1 << 30;  // 1 << 30 = 1073741824
    12 
    13     /** HashMap默认的装载因子,当HashMap中元素数量超过 容量*装载因子 时,则进行resize()扩容操作
    14      * The load factor used when none specified in constructor.
    15      */
    16     static final float DEFAULT_LOAD_FACTOR = 0.75f;
    17 
    18     /** 用来确定何时解决hash冲突的,链表转为红黑树
    19      * The bin count threshold for using a tree rather than list for a
    20      * bin.  Bins are converted to trees when adding an element to a
    21      * bin with at least this many nodes. The value must be greater
    22      * than 2 and should be at least 8 to mesh with assumptions in
    23      * tree removal about conversion back to plain bins upon
    24      * shrinkage.
    25      */
    26     static final int TREEIFY_THRESHOLD = 8;
    27 
    28     /** 用来确定何时解决hash冲突的,红黑树转变为链表
    29      * The bin count threshold for untreeifying a (split) bin during a
    30      * resize operation. Should be less than TREEIFY_THRESHOLD, and at
    31      * most 6 to mesh with shrinkage detection under removal.
    32      */
    33     static final int UNTREEIFY_THRESHOLD = 6;
    34 
    35     /** 当想要将解决hash冲突的链表转变为红黑树时,需要判断下此时数组的容量,若是由于数组容量太小(小于MIN_TREEIFY_CAPACITY)而导致hash冲突,则不进行链表转为红黑树的操作,而是利用resize()函数对HashMap扩容
    36      * The smallest table capacity for which bins may be treeified.
    37      * (Otherwise the table is resized if too many nodes in a bin.)
    38      * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
    39      * between resizing and treeification thresholds.
    40      */
    41     static final int MIN_TREEIFY_CAPACITY = 64;

    HashMap相关成员变量:

     1 /* ---------------- Fields -------------- */
     2 
     3     /** 保存Node<K,V>节点的数组
     4      * The table, initialized on first use, and resized as
     5      * necessary. When allocated, length is always a power of two.
     6      * (We also tolerate length zero in some operations to allow
     7      * bootstrapping mechanics that are currently not needed.)
     8      */
     9     transient Node<K,V>[] table;
    10 
    11     /** 由HashMap中Node<K,V>节点构成的set
    12      * Holds cached entrySet(). Note that AbstractMap fields are used
    13      * for keySet() and values().
    14      */
    15     transient Set<Map.Entry<K,V>> entrySet;
    16 
    17     /** 记录HashMap当前存储的元素的数量
    18      * The number of key-value mappings contained in this map.
    19      */
    20     transient int size;
    21 
    22     /** 记录HashMap发生结构性变化的次数(value值的覆盖不属于结构性变化)
    23      * The number of times this HashMap has been structurally modified
    24      * Structural modifications are those that change the number of mappings in
    25      * the HashMap or otherwise modify its internal structure (e.g.,
    26      * rehash).  This field is used to make iterators on Collection-views of
    27      * the HashMap fail-fast.  (See ConcurrentModificationException).
    28      */
    29     transient int modCount;
    30 
    31     /** threshold的值应等于table.length*loadFactor,size超过这个值时会进行resize()扩容
    32      * The next size value at which to resize (capacity * load factor).
    33      *
    34      * @serial
    35      */
    36     // (The javadoc description is true upon serialization.
    37     // Additionally, if the table array has not been allocated, this
    38     // field holds the initial array capacity, or zero signifying
    39     // DEFAULT_INITIAL_CAPACITY.)
    40     int threshold;
    41 
    42     /** 记录HashMap的装载因子
    43      * The load factor for the hash table.
    44      *
    45      * @serial
    46      */
    47     final float loadFactor;
    48 
    49     /* ---------------- Public operations -------------- */

    四、HashMap的四种构造方法

          HashMap提供了四个构造方法,四个构造方法中方法1、2、3都没有进行数组的初始化操作,即使调用了构造方法此时存放HaspMap的数组中元素的table表长度依旧为0 ;在第四个构造方法中调用了putMapEntries()方法完成了table的初始化操作,并将m中的元素添加到HashMap中。

    HashMap四个构造方法:

      1 /* ---------------- Public operations -------------- */
      2 
      3     /** 构造方法1,指定初始容量及装载因子
      4      * Constructs an empty <tt>HashMap</tt> with the specified initial
      5      * capacity and load factor.
      6      *
      7      * @param  initialCapacity the initial capacity
      8      * @param  loadFactor      the load factor
      9      * @throws IllegalArgumentException if the initial capacity is negative
     10      *         or the load factor is nonpositive
     11      */
     12     public HashMap(int initialCapacity, float loadFactor) {
     13         if (initialCapacity < 0)
     14             throw new IllegalArgumentException("Illegal initial capacity: " +
     15                                                initialCapacity);
     16         if (initialCapacity > MAXIMUM_CAPACITY)
     17             initialCapacity = MAXIMUM_CAPACITY;
     18         if (loadFactor <= 0 || Float.isNaN(loadFactor))
     19             throw new IllegalArgumentException("Illegal load factor: " +
     20                                                loadFactor);
     21         this.loadFactor = loadFactor;
     22         //tableSize(initialCapacity)方法返回的值最接近initialCapacity的2的幂,若设定初始容量为9,则HashMap的实际容量为16
     23         //另外,通过HashMap(int initialCapacity, float loadFactor)该方法创建的HashMap初始容量的值存在threshold中
     24         this.threshold = tableSizeFor(initialCapacity);
     25     }
     26 
     27 
     28      /** tableSizeFor(initialCapacity)方法返回的值是最接近initialCapacity的2的幂次方
     29      * Returns a power of two size for the given target capacity.
     30      */
     31     static final int tableSizeFor(int cap) {
     32         int n = cap - 1;
     33         n |= n >>> 1;
     34         n |= n >>> 2;
     35         n |= n >>> 4;
     36         n |= n >>> 8;
     37         n |= n >>> 16;
     38         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
     39     }
     40 
     41     /** 构造方法2,仅指定初始容量,装载因子的值采用默认的0.75
     42      * Constructs an empty <tt>HashMap</tt> with the specified initial
     43      * capacity and the default load factor (0.75).
     44      *
     45      * @param  initialCapacity the initial capacity.
     46      * @throws IllegalArgumentException if the initial capacity is negative.
     47      */
     48     public HashMap(int initialCapacity) {
     49         this(initialCapacity, DEFAULT_LOAD_FACTOR);
     50     }
     51 
     52     /** 构造方法3,所有参数均采用默认值
     53      * Constructs an empty <tt>HashMap</tt> with the default initial capacity
     54      * (16) and the default load factor (0.75).
     55      */
     56     public HashMap() {
     57         this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
     58     }
     59 
     60     /** 构造方法4,指定集合转为HashMap
     61      * Constructs a new <tt>HashMap</tt> with the same mappings as the
     62      * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
     63      * default load factor (0.75) and an initial capacity sufficient to
     64      * hold the mappings in the specified <tt>Map</tt>.
     65      *
     66      * @param   m the map whose mappings are to be placed in this map
     67      * @throws  NullPointerException if the specified map is null
     68      */
     69     public HashMap(Map<? extends K, ? extends V> m) {
     70         this.loadFactor = DEFAULT_LOAD_FACTOR;
     71         putMapEntries(m, false);
     72     }
     73 
     74      /** 把Map<? extends K, ? extends V> m中的元素插入HashMap
     75      * Implements Map.putAll and Map constructor
     76      *
     77      * @param m the map
     78      * @param evict false when initially constructing this map, else
     79      * true (relayed to method afterNodeInsertion).
     80      */
     81     final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
     82         int s = m.size();
     83         if (s > 0) {
     84             //在创建HashMap时调用putMapEntries()函数,则table一定为空
     85             if (table == null) { // pre-size
     86                 //根据待插入map的size计算出要创建的HashMap的容量
     87                 float ft = ((float)s / loadFactor) + 1.0F;
     88                 int t = ((ft < (float)MAXIMUM_CAPACITY) ?
     89                          (int)ft : MAXIMUM_CAPACITY);
     90                 //把要创建的HashMap的容量存在threshold中
     91                 if (t > threshold)
     92                     threshold = tableSizeFor(t);
     93             }
     94             //如果待插入map的size大于threshold,则进行resize()
     95             else if (s > threshold)
     96                 resize();
     97             for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
     98                 K key = e.getKey();
     99                 V value = e.getValue();
    100                 //最终实际上同样也是调用了putVal()函数进行元素的插入
    101                 putVal(hash(key), key, value, false, evict);
    102             }
    103         }
    104     }

    五、HashMap的put方法

          假如调用hashMap.put("apple",0)方法,将会在HashMap的table数组中插入一个Key为“apple”的元素;这时需要通过hash()函数来确定该Entry的具体插入位置,而hash()方法内部会调用hashCode()函数得到“apple”的hashCode;然后putVal()方法经过一定计算得到最终的插入位置index,最后将这个Entry插入到table的index位置。

    put函数:

     1    /**  指定key和value,向HashMap中插入节点
     2      * Associates the specified value with the specified key in this map.
     3      * If the map previously contained a mapping for the key, the old
     4      * value is replaced.
     5      *
     6      * @param key key with which the specified value is to be associated
     7      * @param value value to be associated with the specified key
     8      * @return the previous value associated with <tt>key</tt>, or
     9      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
    10      *         (A <tt>null</tt> return can also indicate that the map
    11      *         previously associated <tt>null</tt> with <tt>key</tt>.)
    12      */
    13     public V put(K key, V value) {
    14         //插入节点,hash值的计算调用hash(key)函数,实际调用putVal()插入节点
    15         return putVal(hash(key), key, value, false, true);
    16     }
    17 
    18     /** key的hash值计算是通过hashCode()的高16位异或低16位实现的:h = key.hashCode()) ^ (h >>> 16),使用位运算替代了取模运算,在table的长度比较小的情况下,也能保证hashcode的高位参与到地址映射的计算当中,同时不会有太大的开销。
    19      * Computes key.hashCode() and spreads (XORs) higher bits of hash
    20      * to lower.  Because the table uses power-of-two masking, sets of
    21      * hashes that vary only in bits above the current mask will
    22      * always collide. (Among known examples are sets of Float keys
    23      * holding consecutive whole numbers in small tables.)  So we
    24      * apply a transform that spreads the impact of higher bits
    25      * downward. There is a tradeoff between speed, utility, and
    26      * quality of bit-spreading. Because many common sets of hashes
    27      * are already reasonably distributed (so don't benefit from
    28      * spreading), and because we use trees to handle large sets of
    29      * collisions in bins, we just XOR some shifted bits in the
    30      * cheapest possible way to reduce systematic lossage, as well as
    31      * to incorporate impact of the highest bits that would otherwise
    32      * never be used in index calculations because of table bounds.
    33      */
    34     static final int hash(Object key) {
    35         int h;
    36         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    37     }

    putVal()函数:

     1    /** 实际将元素插入HashMap中的方法
     2      * Implements Map.put and related methods
     3      *
     4      * @param hash hash for key
     5      * @param key the key
     6      * @param value the value to put
     7      * @param onlyIfAbsent if true, don't change existing value
     8      * @param evict if false, the table is in creation mode.
     9      * @return previous value, or null if none
    10      */
    11     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
    12                    boolean evict) {
    13         Node<K,V>[] tab; Node<K,V> p; int n, i;
    14         //判断table是否已初始化,否则进行初始化table操作
    15         if ((tab = table) == null || (n = tab.length) == 0)
    16             n = (tab = resize()).length;
    17         //根据hash值确定节点在数组中的插入的位置,即计算索引存储的位置,若该位置无元素则直接进行插入
    18         if ((p = tab[i = (n - 1) & hash]) == null)
    19             tab[i] = newNode(hash, key, value, null);
    20         else {
    21             //节点若已经存在元素,即待插入位置存在元素
    22             Node<K,V> e; K k;
    23             //对比已经存在的元素与待插入元素的hash值和key值,执行赋值操作
    24             if (p.hash == hash &&
    25                 ((k = p.key) == key || (key != null && key.equals(k))))
    26                 e = p;
    27             //判断该元素是否为红黑树节点
    28             else if (p instanceof TreeNode)
    29                 //红黑树节点则调用putTreeVal()函数进行插入
    30                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
    31             else {
    32                 //若该元素是链表,且为链表头节点,则从此节点开始向后寻找合适的插入位置
    33                 for (int binCount = 0; ; ++binCount) {
    34                     if ((e = p.next) == null) {
    35                         //找到插入位置后,新建节点插入
    36                         p.next = newNode(hash, key, value, null);
    37                         //若链表上节点超过TREEIFY_THRESHOLD - 1,即链表长度为8,将链表转变为红黑树
    38                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
    39                             treeifyBin(tab, hash);
    40                         break;
    41                     }
    42                     //若待插入元素在HashMap中已存在,key存在了则直接覆盖
    43                     if (e.hash == hash &&
    44                         ((k = e.key) == key || (key != null && key.equals(k))))
    45                         break;
    46                     p = e;
    47                 }
    48             }
    49             if (e != null) { // existing mapping for key
    50                 V oldValue = e.value;
    51                 if (!onlyIfAbsent || oldValue == null)
    52                     e.value = value;
    53                 afterNodeAccess(e);
    54                 //若存在key节点,则返回旧的key值
    55                 return oldValue;
    56             }
    57         }
    58         //记录修改次数
    59         ++modCount;
    60         //判断是否需要扩容
    61         if (++size > threshold)
    62             resize();
    63         //空操作
    64         afterNodeInsertion(evict);
    65         //若不存在key节点,则返回null
    66         return null;
    67     }

     链表转红黑树的putTreeVal()函数:

     1        /** 链表转红黑树
     2          * Tree version of putVal.
     3          */
     4         final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
     5                                        int h, K k, V v) {
     6             Class<?> kc = null;
     7             boolean searched = false;
     8             TreeNode<K,V> root = (parent != null) ? root() : this;
     9             //从根节点开始查找合适的插入位置
    10             for (TreeNode<K,V> p = root;;) {
    11                 int dir, ph; K pk;
    12                 if ((ph = p.hash) > h)
    13                     //若dir<0,则查找当前节点的左孩子
    14                     dir = -1;
    15                 else if (ph < h)
    16                     //若dir>0,则查找当前节点的右孩子
    17                     dir = 1;
    18                 //hash值或是key值相同
    19                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
    20                     return p;
    21                 //1.当前节点与待插入节点key不同,hash值相同
    22                 //2.k是不可比较的,即k未实现comparable<K>接口,或者compareComparables(kc,k,pk)的返回值为0
    23                 else if ((kc == null &&
    24                           (kc = comparableClassFor(k)) == null) ||
    25                          (dir = compareComparables(kc, k, pk)) == 0) {
    26                     //在以当前节点为根节点的整个树上搜索是否存在待插入节点(只搜索一次)
    27                     if (!searched) {
    28                         TreeNode<K,V> q, ch;
    29                         searched = true;
    30                         if (((ch = p.left) != null &&
    31                              (q = ch.find(h, k, kc)) != null) ||
    32                             ((ch = p.right) != null &&
    33                              (q = ch.find(h, k, kc)) != null))
    34                             //若搜索发现树中存在待插入节点,则直接返回
    35                             return q;
    36                     }
    37                     //指定了一个k的比较方式 tieBreakOrder
    38                     dir = tieBreakOrder(k, pk);
    39                 }
    40 
    41                 TreeNode<K,V> xp = p;
    42                 if ((p = (dir <= 0) ? p.left : p.right) == null) {
    43                     //找到了待插入位置,xp为待插入位置的父节点,TreeNode节点中既存在树状关系,又存在链式关系,而且还是双端链表
    44                     Node<K,V> xpn = xp.next;
    45                     TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
    46                     if (dir <= 0)
    47                         xp.left = x;
    48                     else
    49                         xp.right = x;
    50                     xp.next = x;
    51                     x.parent = x.prev = xp;
    52                     if (xpn != null)
    53                         ((TreeNode<K,V>)xpn).prev = x;
    54                     //插入节点后进行二叉树平衡操作
    55                     moveRootToFront(tab, balanceInsertion(root, x));
    56                     return null;
    57                 }
    58             }
    59         }
    60 
    61      /** 定义了一个k的比较方法
    62          * Tie-breaking utility for ordering insertions when equal
    63          * hashCodes and non-comparable. We don't require a total
    64          * order, just a consistent insertion rule to maintain
    65          * equivalence across rebalancings. Tie-breaking further than
    66          * necessary simplifies testing a bit.
    67          */
    68         static int tieBreakOrder(Object a, Object b) {
    69             int d;
    70             if (a == null || b == null ||
    71                 (d = a.getClass().getName().
    72                  compareTo(b.getClass().getName())) == 0)
    73                 //System.identityHashCode()实际是比较对象a,b的内存地址
    74                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
    75                      -1 : 1);
    76             return d;
    77         }

    图9. hashCode计算得到table索引的过程

    图10. put添加方法执行过程

    上图的HashMap的put方法执行流程图,可以总结为如下主要步骤:

    1. 判断数组table是否为null,若为null则执行resize()扩容操作。

    2. 根据键key的值计算hash值得到插入的数组索引i,若table[i] == nulll,则直接新建节点插入,进入步骤6;若table[i]非null,则继续执行下一步。

    3. 判断table[i]的首个元素key是否和当前key相同(hashCode和equals均相同),若相同则直接覆盖value,进入步骤6,反之继续执行下一步。

    4. 判断table[i]是否为treeNode,若是红黑树,则直接在树中插入键值对并进入步骤6,反之继续执行下一步。

    5. 遍历table[i],判断链表长度是否大于8,若>8,则把链表转换为红黑树,在红黑树中执行插入操作;若<8,则进行链表的插入操作;遍历过程中若发现key已存在则会直接覆盖该key的value值。

    6. 插入成功后,判断实际存在的键值对数量size是否超过了最大容量threshold,若超过则进行扩容。

    六、HashMap的get方法

    get()和getNode()函数:

     1    /**
     2      * Returns the value to which the specified key is mapped,
     3      * or {@code null} if this map contains no mapping for the key.
     4      *
     5      * <p>More formally, if this map contains a mapping from a key
     6      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     7      * key.equals(k))}, then this method returns {@code v}; otherwise
     8      * it returns {@code null}.  (There can be at most one such mapping.)
     9      *
    10      * <p>A return value of {@code null} does not <i>necessarily</i>
    11      * indicate that the map contains no mapping for the key; it's also
    12      * possible that the map explicitly maps the key to {@code null}.
    13      * The {@link #containsKey containsKey} operation may be used to
    14      * distinguish these two cases.
    15      *
    16      * @see #put(Object, Object)
    17      */
    18     public V get(Object key) {
    19         Node<K,V> e;
    20         //实际上是根据输入节点的hash值和key值,利用getNode方法进行查找
    21         return (e = getNode(hash(key), key)) == null ? null : e.value;
    22     }
    23 
    24     /**
    25      * Implements Map.get and related methods
    26      *
    27      * @param hash hash for key
    28      * @param key the key
    29      * @return the node, or null if none
    30      */
    31     final Node<K,V> getNode(int hash, Object key) {
    32         Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    33         if ((tab = table) != null && (n = tab.length) > 0 &&
    34             (first = tab[(n - 1) & hash]) != null) {
    35             if (first.hash == hash && // always check first node
    36                 ((k = first.key) == key || (key != null && key.equals(k))))
    37                 return first;
    38             if ((e = first.next) != null) {
    39                 if (first instanceof TreeNode)
    40                     //若定位到的节点是TreeNode节点,则在树中进行查找
    41                     return ((TreeNode<K,V>)first).getTreeNode(hash, key);
    42                 do {
    43                      //反之,在链表中查找
    44                     if (e.hash == hash &&
    45                         ((k = e.key) == key || (key != null && key.equals(k))))
    46                         return e;
    47                 } while ((e = e.next) != null);
    48             }
    49         }
    50         return null;
    51     }

    getTreeNode()和find()函数:

     1        /** 从根节点开始,调用find()方法进行查找
     2          * Calls find for root node.
     3          */
     4         final TreeNode<K,V> getTreeNode(int h, Object k) {
     5             return ((parent != null) ? root() : this).find(h, k, null);
     6         } 
     7 
     8        /**
     9          * Finds the node starting at root p with the given hash and key.
    10          * The kc argument caches comparableClassFor(key) upon first use
    11          * comparing keys.
    12          */
    13         final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
    14             TreeNode<K,V> p = this;
    15             do {
    16                 int ph, dir; K pk;
    17                 TreeNode<K,V> pl = p.left, pr = p.right, q;
    18                 //首先进行hash值的比较,若不同则令当前节点变为它的左孩子or右孩子
    19                 if ((ph = p.hash) > h)
    20                     p = pl;
    21                 else if (ph < h)
    22                     p = pr;
    23                 //若hash值相同,进行key值的比较
    24                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
    25                     return p;
    26                 else if (pl == null)
    27                     p = pr;
    28                 else if (pr == null)
    29                     p = pl;
    30                 //执行到这里,说明了hash值是相同的,key值不同
    31                //若k是可比较的并且k.compareTo(pk)的返回结果不为0,则进入下面的else if
    32                 else if ((kc != null ||
    33                           (kc = comparableClassFor(k)) != null) &&
    34                          (dir = compareComparables(kc, k, pk)) != 0)
    35                     p = (dir < 0) ? pl : pr;
    36                 //若k是不可比较的,或者k.compareTo(pk)返回结果为0,则在整棵树中查找,先找右子树,没找到则再到左子树找
    37                 else if ((q = pr.find(h, k, kc)) != null)
    38                     return q;
    39                 else
    40                     p = pl;
    41             } while (p != null);
    42             return null;
    43         }

    图11. get方法执行流程

    上图为HashMap get方法执行流程图,HashMap的查找操作相对简单,可以总结为如下主要步骤:

    1. 首先定位到键所在的数组的下标,并获取对应节点n。

    2. 判断n是否为null,若n为null,则返回null并结束;反之,继续下一步。

    3. 判断n的key和要查找的key是否相同(key相同指的是hashCode和equals均相同),若相同则返回n并结束;反之,继续下一步。

    4. 判断是否有后续节点m,若没有则结束;反之,继续下一步。

    5. 判断m是否为红黑树,若为红黑树则遍历红黑树,在遍历过程中如果存在某一个节点的key与要找的key相同,则返回该节点;反之,返回null;若非红黑树则继续下一步。

    6. 遍历链表,若存在某一个节点的key与要找的key相同,则返回该节点;反之,返回null。

    七、HashMap的remove方法

    HashMap根据键值删除指定节点,其删除操作其实是一个“查找+删除”的过程,核心的方法是removeNode。

    remove和removeNode()函数:

     1     /**
     2      * Removes the mapping for the specified key from this map if present.
     3      *
     4      * @param  key key whose mapping is to be removed from the map
     5      * @return the previous value associated with <tt>key</tt>, or
     6      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     7      *         (A <tt>null</tt> return can also indicate that the map
     8      *         previously associated <tt>null</tt> with <tt>key</tt>.)
     9      */
    10     public V remove(Object key) {
    11         Node<K,V> e;
    12         //计算出hash值,调用removeNode()方法根据键值删除指定节点
    13         return (e = removeNode(hash(key), key, null, false, true)) == null ?
    14             null : e.value;
    15     }
    16 
    17     /**
    18      * Implements Map.remove and related methods
    19      *
    20      * @param hash hash for key
    21      * @param key the key
    22      * @param value the value to match if matchValue, else ignored
    23      * @param matchValue if true only remove if value is equal
    24      * @param movable if false do not move other nodes while removing
    25      * @return the node, or null if none
    26      */
    27     final Node<K,V> removeNode(int hash, Object key, Object value,
    28                                boolean matchValue, boolean movable) {
    29         Node<K,V>[] tab; Node<K,V> p; int n, index;
    30         //判断表是否为空,以及p节点根据键的hash值对应到数组的索引初是否有节点
    31        //删除操作需要保证在表不为空的情况下进行,并且p节点根据键的hash值对应到数组的索引在该索引下必须要有节点;若为null,则说明此键所对应的节点不存在HashMap中
    32         if ((tab = table) != null && (n = tab.length) > 0 &&
    33             (p = tab[index = (n - 1) & hash]) != null) {
    34             Node<K,V> node = null, e; K k; V v;
    35             //若是需要删除的节点就是该头节点,则让node引用指向它;否则什么待删除的结点在当前p所指向的头节点的链表或红黑树中,则需要遍历查找
    36             if (p.hash == hash &&
    37                 ((k = p.key) == key || (key != null && key.equals(k))))
    38                 node = p;
    39             else if ((e = p.next) != null) {
    40                 //若头节点是红黑树节点,则调用红黑树本身的遍历方法getTreeNode,获取待删除的结点
    41                 if (p instanceof TreeNode)
    42                     node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
    43                 else {
    44                     //否则就是普通链表,则使用do while循环遍历查找待删除结点
    45                     do {
    46                         if (e.hash == hash &&
    47                             ((k = e.key) == key ||
    48                              (key != null && key.equals(k)))) {
    49                             node = e;
    50                             break;
    51                         }
    52                         p = e;
    53                     } while ((e = e.next) != null);
    54                 }
    55             }
    56             if (node != null && (!matchValue || (v = node.value) == value ||
    57                                  (value != null && value.equals(v)))) {
    58                 //若是红黑树结点的删除,则直接调用红黑树的removeTreeNode方法进行删除
    59                 if (node instanceof TreeNode)
    60                     ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
    61                 //若待删除结点是一个头节点,则用它的next节点顶替它作为头节点存放在table[index]中,以此达到删除的目的
    62                 else if (node == p)
    63                     tab[index] = node.next;
    64                 //若待删除结点为普通链表中的一个结点,则用该节点的前一个节点直接跳过该待删除节点,指向它的next结点(链表通过next获取下一个结点信息)
    65                 else
    66                     p.next = node.next;
    67                 //记录修改次数
    68                 ++modCount;
    69                 --size;
    70                 afterNodeRemoval(node);
    71                 //若removeNode方法删除成功则返回被删除的结点
    72                 return node;
    73             }
    74         }
    75          //若没有删除成功则返回null
    76         return null;
    77     }

    八、HashMap的扩容机制

          扩容是为了防止HashMap中的元素个数超过了阀值,从而影响性能所服务的。而数组是无法自动扩容的,HashMap的扩容是申请一个容量为原数组大小两倍的新数组,然后遍历旧数组,重新计算每个元素的索引位置,并复制到新数组中;又因为HashMap的哈希桶数组大小总是为2的幂次方,So重新计算后的索引位置要么在原来位置不变,要么就是“原位置+旧数组长度”。

          其中,threshold和loadFactor两个属性决定着是否扩容。threshold=Length*loadFactor,Length表示table数组的长度(默认值为16),loadFactor为负载因子(默认值为0.75);阀值threshold表示当table数组中存储的元素个数超过该阀值时,即需要扩容;如数组默认长度为16,负载因子默认0.75,此时threshold=16*0.75=12,即当table数组中存储的元素个数超过12个时,table数组就该进行扩容了。

          HashMap的扩容使用新的数组代替旧数组,然后将旧数组中的元素重新计算索引位置并放到新数组中,对旧数组中的元素如何重新映射到新数组中?由于HashMap扩容时使用的是2的幂次方扩展的,即数组长度扩大为原来的2倍、4倍、8倍、16倍...,因此在扩容时(Length-1)这部分就相当于在高位新增一个或多个1位(bit);如下图12,HashMap扩大为原数组的两倍为例。

    图12. HashMap的哈希算法数组扩容

          如上图12所示,(a)为扩容前,key1和key2两个key确定索引的位置;(b)为扩容后,key1和key2两个key确定索引的位置;hash1和hash2分别是key1与key2对应的哈希“与高位运算”结果。

    (a)中数组的高位bit为“1111”,1*2+ 1*2+ 1*22 + 1*23 = 15,而 n-1 =15,所以扩容前table的长度n为16;

    (b)中n扩大为原来的两倍,其数组大小的高位bit为“1 1111”,1*2+ 1*2+ 1*22 + 1*2+ 1*24 = 15+16=31,而 n-1=31,所以扩容后table的长度n为32;

    (a)中的n为16,(b)中扩大两倍n为32,相当于(n-1)这部分的高位多了一个1,然后和原hash码作与操作,最后元素在新数组中映射的位置要么不变,要么向后移动16个位置,如下图13所示。

    图13. HashMap中数组扩容两倍后位置的变化

    HashMap中数组扩容两倍后位置的变化
    KEY hash 原数组高位bit 原下标 新数组高位bit 新下标
    key1 0 0101 1111 0 0101 1 1111 0 0101 = 1*20+0*21+1*22+0*23+0*24= 5
    key2 1 0101 1111 0 0101 1 1111 1 0101 = 1*2+ 0*2+ 1*22 + 0*23+0*24= 5+16

     

          因此,我们在扩充HashMap,复制数组元素及确定索引位置时不需要重新计算hash值,只需要判断原来的hash值新增的那个bit是1,还是0;若为0,则索引未改变;若为1,则索引变为“原索引+oldCap”;如图14,HashMap中数组从16扩容为32的resize图。

    图14. HashMap中数组16扩容至32

    这样设计有如下几点好处:

    1. 省去了重新计算hash值的时间(由于位运算直接对内存数据进行操作,不需要转成十进制,因此处理速度非常快),只需判断新增的一位是0或1;

    2. 由于新增的1位可以认为是随机的0或1,因此扩容过程中会均匀的把之前有冲突的节点分散到新的位置(bucket槽),并且位置的先后顺序不会颠倒;

    3. JDK1.7中扩容时,旧链表迁移到新链表的时候,若出现在新链表的数组索引位置相同情况,则链表元素会倒置,但从图14中看出JKD1.8的扩容并不会颠倒相同索引的链表元素。

    HashMap扩容resize函数:

      1    /**
      2      * Initializes or doubles table size.  If null, allocates in
      3      * accord with initial capacity target held in field threshold.
      4      * Otherwise, because we are using power-of-two expansion, the
      5      * elements from each bin must either stay at same index, or move
      6      * with a power of two offset in the new table.
      7      *
      8      * @return the table
      9      */
     10     final Node<K,V>[] resize() {
     11         Node<K,V>[] oldTab = table;
     12         int oldCap = (oldTab == null) ? 0 : oldTab.length;
     13         int oldThr = threshold;
     14         int newCap, newThr = 0;
     15         //当哈希桶不为空时,扩容走该支路A
     16         if (oldCap > 0) {
     17              //若容量超过最大值,则无法进行扩容,需扩大阀值
     18             if (oldCap >= MAXIMUM_CAPACITY) {
     19                 threshold = Integer.MAX_VALUE;
     20                 return oldTab;
     21             }
     22             //若哈希桶扩容为原来的2倍,阀值也变为原来的两倍
     23             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
     24                      oldCap >= DEFAULT_INITIAL_CAPACITY)
     25                 newThr = oldThr << 1; // double threshold
     26         }
     27         //当调用非空函数时,走此分支B
     28         else if (oldThr > 0) // initial capacity was placed in threshold
     29             newCap = oldThr;
     30         //调用空的构造函数时走此分支C,使用默认大小和阀值初始化哈希桶
     31         else {               // zero initial threshold signifies using defaults
     32             newCap = DEFAULT_INITIAL_CAPACITY;
     33             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
     34         }
     35         //int newCap, newThr = 0; 当走分支B时 newThr 为0
     36         if (newThr == 0) {
     37             float ft = (float)newCap * loadFactor;
     38              //走分支B调用的是非空函数,直接把容量大小赋值给阀值,需要计算新的阀值threshold
     39             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
     40                       (int)ft : Integer.MAX_VALUE);
     41         }
     42         threshold = newThr;
     43         @SuppressWarnings({"rawtypes","unchecked"})
     44             //new一个新的哈希桶
     45             Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
     46         table = newTab;
     47          //扩容分支
     48         if (oldTab != null) {
     49             //for循环把oldTab中的每个节点node,reHash操作并移动到新的数组newTab中
     50             for (int j = 0; j < oldCap; ++j) {
     51                 Node<K,V> e;
     52                 if ((e = oldTab[j]) != null) {
     53                     oldTab[j] = null;
     54                      //e.next == null,若是单个节点,即没有后继next节点,则直接在newTab在进行重定位
     55                     if (e.next == null)
     56                         newTab[e.hash & (newCap - 1)] = e;
     57                     //若节点为TreeNode,则需要进行红黑树的rehash操作
     58                     else if (e instanceof TreeNode)
     59                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
     60                     //else则节点为链表,需进行链表的rehash操作,链表重组并保持原有顺序
     61                     else { // preserve order
     62                         Node<K,V> loHead = null, loTail = null;
     63                         Node<K,V> hiHead = null, hiTail = null;
     64                         Node<K,V> next;
     65                         do {
     66                             next = e.next;
     67                             //通过与位运算&,判断rehash后节点位置是否发生改变
     68                             //(e.hash & oldCap) == 0,则为原位置
     69                             if ((e.hash & oldCap) == 0) {
     70                                 if (loTail == null)
     71                                     //loHead 指向新的 hash 在原位置的头节点
     72                                     loHead = e;
     73                                 else
     74                                     //loTail 指向新的 hash 在原位置的尾节点
     75                                     loTail.next = e;
     76                                 loTail = e;
     77                             }
     78                             //else则rehash后节点位置变为:原位置+oldCap位置
     79                             else {
     80                                 if (hiTail == null)
     81                                     //hiHead 指向新的 hash 在原位置 + oldCap 位置的头节点
     82                                     hiHead = e;
     83                                 else
     84                                     // hiTail 指向新的 hash 在原位置 + oldCap 位置的尾节点
     85                                     hiTail.next = e;
     86                                 hiTail = e;
     87                             }
     88                         } while ((e = next) != null);
     89                          //loTail非null,新的hash在原位置的头节点放入哈希桶
     90                         if (loTail != null) {
     91                             loTail.next = null;
     92                             newTab[j] = loHead;
     93                         }
     94                         //hiTail非null,新的hash在 原位置+oldCap位置 的头节点放入哈希桶
     95                         if (hiTail != null) {
     96                             hiTail.next = null;
     97                             // rehash 后节点新的位置一定为原位置加上 oldCap
     98                             newTab[j + oldCap] = hiHead;
     99                         }
    100                     }
    101                 }
    102             }
    103         }
    104         return newTab;
    105     }

    HashMap对红黑树进行rehash操作的split函数:

     1        /**
     2          * Splits nodes in a tree bin into lower and upper tree bins,
     3          * or untreeifies if now too small. Called only from resize;
     4          * see above discussion about split bits and indices.
     5          *
     6          * @param map the map
     7          * @param tab the table for recording bin heads
     8          * @param index the index of the table being split
     9          * @param bit the bit of hash to split on
    10          */
    11         final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
    12             TreeNode<K,V> b = this;
    13                  /**
    14                     * loHead 指向新的 hash 在原位置的头节点
    15                     * loTail 指向新的 hash 在原位置的尾节点
    16                     * hiHead 指向新的 hash 在原位置 + oldCap 位置的头节点
    17                     * hiTail 指向新的 hash 在原位置 + oldCap 位置的尾节点
    18                     */
    19             // Relink into lo and hi lists, preserving order
    20             TreeNode<K,V> loHead = null, loTail = null;
    21             TreeNode<K,V> hiHead = null, hiTail = null;
    22             int lc = 0, hc = 0;
    23             //由于TreeNode节点之间存在着双端链表的关系,可利用链表关系进行rehash
    24             for (TreeNode<K,V> e = b, next; e != null; e = next) {
    25                 next = (TreeNode<K,V>)e.next;
    26                 e.next = null;
    27                  //原位置
    28                 if ((e.hash & bit) == 0) {
    29                     if ((e.prev = loTail) == null)
    30                         loHead = e;
    31                     else
    32                         loTail.next = e;
    33                     loTail = e;
    34                     ++lc;
    35                 }
    36                 //else则为原位置 + oldCap
    37                 else {
    38                     if ((e.prev = hiTail) == null)
    39                         hiHead = e;
    40                     else
    41                         hiTail.next = e;
    42                     hiTail = e;
    43                     ++hc;
    44                 }
    45             }
    46             //rehash操作后,根据链表长度进行untreeify解除树形化或treeify树形化操作
    47             if (loHead != null) {
    48                 //当链表的节点个数小于等于解除树形化阀值UNTREEIFY_THRESHOLD时,将红黑树转为普通链表
    49                 if (lc <= UNTREEIFY_THRESHOLD)
    50                     tab[index] = loHead.untreeify(map);
    51                 else {
    52                     //新的hash在原位置的头节点放入哈希桶
    53                     tab[index] = loHead;
    54                     if (hiHead != null) // (else is already treeified)
    55                         loHead.treeify(tab);
    56                 }
    57             }
    58             if (hiHead != null) {
    59                 //当链表的节点个数小于等于解除树形化阀值UNTREEIFY_THRESHOLD时,将红黑树转为普通链表
    60                 if (hc <= UNTREEIFY_THRESHOLD)
    61                     tab[index + bit] = hiHead.untreeify(map);
    62                 else {
    63                     //新的hash在原位置 + oldCap位置的头节点放入哈希桶
    64                     tab[index + bit] = hiHead;
    65                     if (loHead != null)
    66                         hiHead.treeify(tab);
    67                 }
    68             }
    69         }

    九、总结

    1. HashMap的哈希桶初始长度Length默认为16,负载因子默loadFactor认值为0.75,threshold阀值是HashMap能容纳的最大数据量的Node节点个数,threshold=Length*loadFactor。

    2. 当HashMap中存储的元素个数超过了threshold阀值时,则会进行reseize扩容操作,扩容后的数组容量为之前的两倍;但扩容是个特别消耗性能的操作,So当我们在使用HashMap的时候,可以估算下Map的大小,在初始化时指定一个大致的数值,这样可以减少Map频繁扩容的次数。

    3. HashMap中实际存储的键值对的数量通过size表示,table数组的长度为Length。

    4. modCount是用来记录HashMap内部结构发生变化的次数,put方法覆盖HashMap中的某个key对应的value不属于结构变化。

    5. HashMap哈希桶的大小必须为2的幂次方。

    6. JDK1.8引入红黑树操作,大幅度优化了HashMap的性能。

    7. HashMap是非线程安全的,在并发环境中同时操作HashMap时最好使用线程安全的ConcurrentHashMap。

    8. 因为我不知道下一辈子还是否能遇见你 所以我今生才会那么努力把最好的给你。

  • 相关阅读:
    支付宝支付私钥和公钥创建
    (五)Maven中的聚合和继承
    Windows 下Nexus搭建Maven私服
    (四)Maven中的仓库
    zookeeper安装和使用 windows环境
    (一)Redis之简介和windows下安装radis
    (错误) Eclipse使用Maven创建Web时错误
    (三)引用中央仓库中不存在的jar包
    (二)依赖传递
    (一)Maven基础及第一个Maven工程
  • 原文地址:https://www.cnblogs.com/taojietaoge/p/11359542.html
Copyright © 2011-2022 走看看