zoukankan      html  css  js  c++  java
  • TZOJ 1594 Optimal Milking(二分+最大流)

    描述

    FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C.

    Each milking point can "process" at most M (1 <= M <= 15) cows each day.

    Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine.

    输入

    * Line 1: A single line with three space-separated integers: K, C, and M.

    * Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line.

    输出

    A single line with a single integer that is the minimum possible total distance for the furthest walking cow.

    样例输入

    2 3 2
    0 3 2 1 1
    3 0 3 2 0
    2 3 0 1 0
    1 2 1 0 2
    1 0 0 2 0

    样例输出

    2

    题意

    给你(K+C)*(K+C)的图,K个牛奶机,每个牛奶机最多供M头牛,一共C头牛,问所有方案中使得距离牛奶机器最远的牛的距离最小

    题解

    先把牛奶机连汇点T流量M,牛连源点S流量1,牛和牛奶机连流量1,如果C牛都能有饮料机,则说明汇点T=C

    然后是怎么连牛和牛奶机的问题,可以知道答案求的是最大值最小

    直接二分答案[0,200*(K+C)]

    每次把距离<=mid的边加进去,如果T=C,则说明可行,r=mid

    否则l=mid

    代码

      1 #include<bits/stdc++.h>
      2 using namespace std;
      3 
      4 const int maxn=1e5+5;
      5 const int maxm=2e5+5;
      6 int n,m,S,T;
      7 int deep[maxn],q[400000];
      8 int FIR[maxn],TO[maxm],CAP[maxm],COST[maxm],NEXT[maxm],tote;
      9 
     10 void add(int u,int v,int cap)
     11 {
     12     TO[tote]=v;
     13     CAP[tote]=cap;
     14     NEXT[tote]=FIR[u];
     15     FIR[u]=tote++;
     16 
     17     TO[tote]=u;
     18     CAP[tote]=0;
     19     NEXT[tote]=FIR[v];
     20     FIR[v]=tote++;
     21 }
     22 bool bfs()
     23 {
     24     memset(deep,0,sizeof deep);
     25     deep[S]=1;q[1]=S;
     26     int head=0,tail=1;
     27     while(head!=tail)
     28     {
     29         int u=q[++head];
     30         for(int v=FIR[u];v!=-1;v=NEXT[v])
     31         {
     32             if(CAP[v]&&!deep[TO[v]])
     33             {
     34                 deep[TO[v]]=deep[u]+1;
     35                 q[++tail]=TO[v];
     36             }
     37         }
     38     }
     39     return deep[T];
     40 }
     41 int dfs(int u,int fl)
     42 {
     43     if(u==T)return fl;
     44     int f=0;
     45     for(int v=FIR[u];v!=-1&&fl;v=NEXT[v])
     46     {
     47         if(CAP[v]&&deep[TO[v]]==deep[u]+1)
     48         {
     49             int Min=dfs(TO[v],min(fl,CAP[v]));
     50             CAP[v]-=Min;CAP[v^1]+=Min;
     51             fl-=Min;f+=Min;
     52         }
     53     }
     54     if(!f)deep[u]=-2;
     55     return f;
     56 }
     57 int maxflow()
     58 {
     59     int ans=0;
     60     while(bfs())
     61         ans+=dfs(S,1<<30);
     62     return ans;
     63 }
     64 void init()
     65 {
     66     tote=0;
     67     memset(FIR,-1,sizeof FIR);
     68 }
     69 int K,C,N,M,a[250][250];
     70 int main()
     71 {
     72     cin>>K>>C>>M;
     73     N=K+C;
     74     for(int i=1;i<=N;i++)
     75         for(int j=1;j<=N;j++)
     76         {
     77             scanf("%d",&a[i][j]);
     78             if(i!=j&&!a[i][j])a[i][j]=0x3f3f3f3f;
     79         }
     80     for(int k=1;k<=N;k++)
     81         for(int i=1;i<=N;i++)
     82             for(int j=1;j<=N;j++)
     83                 if(a[i][j]>a[i][k]+a[k][j])
     84                     a[i][j]=a[i][k]+a[k][j];
     85     int l=0,r=200*N;
     86     S=0,T=K+C+1;
     87     while(r-l>1)
     88     {
     89         int mid=(l+r)>>1;
     90         init();
     91         for(int i=1;i<=K;i++)
     92             add(S,i,M);
     93         for(int i=K+1;i<=N;i++)
     94             add(i,T,1);
     95         for(int i=1;i<=K;i++)
     96             for(int j=K+1;j<=N;j++)
     97                 if(a[i][j]&&a[i][j]<=mid)
     98                     add(i,j,a[i][j]);
     99         int sum=maxflow();
    100         if(sum==C)r=mid;
    101         else l=mid;
    102     }
    103     printf("%d
    ",r);
    104     return 0;
    105 }
  • 相关阅读:
    mac os x 查看网络端口情况
    mac 启动php-fpm报错 failed to open configuration file '/private/etc/php-fpm.conf': No such file or direc
    视频播放—— H5同层播放器接入规范
    [转]webpack中require和import的区别
    职场方法论系列—怎样做项目
    一幅图帮你搞懂订单的拆分与合并
    如何用数据去驱动决策?
    分库分表的 9种分布式主键ID 生成方案,挺全乎的
    快手基于 Apache Flink 的优化实践
    SQL数据库中临时表、临时变量和WITH AS关键词创建“临时表”的区别
  • 原文地址:https://www.cnblogs.com/taozi1115402474/p/9535645.html
Copyright © 2011-2022 走看看