zoukankan      html  css  js  c++  java
  • HDU 4940 Destroy Transportation system(无源汇上下界网络流)

    Problem Description
    Tom is a commander, his task is destroying his enemy’s transportation system.

    Let’s represent his enemy’s transportation system as a simple directed graph G with n nodes and m edges. Each node is a city and each directed edge is a directed road. Each edge from node u to node v is associated with two values D and B, D is the cost to destroy/remove such edge, B is the cost to build an undirected edge between u and v.

    His enemy can deliver supplies from city u to city v if and only if there is a directed path from u to v. At first they can deliver supplies from any city to any other cities. So the graph is a strongly-connected graph.

    He will choose a non-empty proper subset of cities, let’s denote this set as S. Let’s denote the complement set of S as T. He will command his soldiers to destroy all the edges (u, v) that u belongs to set S and v belongs to set T.

    To destroy an edge, he must pay the related cost D. The total cost he will pay is X. You can use this formula to calculate X:

    After that, all the edges from S to T are destroyed. In order to deliver huge number of supplies from S to T, his enemy will change all the remained directed edges (u, v) that u belongs to set T and v belongs to set S into undirected edges. (Surely, those edges exist because the original graph is strongly-connected)

    To change an edge, they must remove the original directed edge at first, whose cost is D, then they have to build a new undirected edge, whose cost is B. The total cost they will pay is Y. You can use this formula to calculate Y:

    At last, if Y>=X, Tom will achieve his goal. But Tom is so lazy that he is unwilling to take a cup of time to choose a set S to make Y>=X, he hope to choose set S randomly! So he asks you if there is a set S, such that Y<X. If such set exists, he will feel unhappy, because he must choose set S carefully, otherwise he will become very happy.
     
    Input
    There are multiply test cases.

    The first line contains an integer T(T<=200), indicates the number of cases.

    For each test case, the first line has two numbers n and m.

    Next m lines describe each edge. Each line has four numbers u, v, D, B.
    (2=<n<=200, 2=<m<=5000, 1=<u, v<=n, 0=<D, B<=100000)

    The meaning of all characters are described above. It is guaranteed that the input graph is strongly-connected.
     
    Output
    For each case, output "Case #X: " first, X is the case number starting from 1.If such set doesn’t exist, print “happy”, else print “unhappy”.
     
    Sample Input
    2
    3 3
    1 2 2 2
    2 3 2 2
    3 1 2 2
    3 3
    1 2 10 2
    2 3 2 2
    3 1 2 2
     
    Sample Output
    Case #1: happy
    Case #2: unhappy
     
    Sample Output
    In first sample, for any set S, X=2, Y=4.
    In second sample. S= {1}, T= {2, 3}, X=10, Y=4.

    题意

    给你N个点M条边强连通的有向简单图,D代表删掉这个边的花费,D+B代表重建为双向边的花费,让你选择一个集合S,其余的点在T集合,X为u在S集合v在T集合的所有边的D之和,Y为u在T集合v在S集合的所有边的D+B之和,求是否存在一个集合S,使得X>Y,若存在输出unhappy,否则输出happy

    题解

    无源汇上下界网络流,下界D,上界D+B,判断是否存在可行流

    若存在,则说明对于任意集合S,流出的流量=流入的流量,X<=流出的流量<=Y

    建图每条边建为自由流(u,v,B)

    对于每个点,设M为总流入-总流出

    若M>0,则建(S,i,M)说明i需要多流出M

    若M<0,则建(i,T,M)说明i需要多流入M

    最后判断与S连的边是否全满流

    代码

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 
     4 const int maxn=1e5+5;
     5 const int maxm=2e5+5;
     6 const int INF=0x3f3f3f3f;
     7 
     8 int TO[maxm],CAP[maxm],NEXT[maxm],tote;
     9 int FIR[maxn],gap[maxn],cur[maxn],d[maxn],q[400000];
    10 int n,m,S,T;
    11 
    12 void add(int u,int v,int cap)
    13 {
    14     TO[tote]=v;
    15     CAP[tote]=cap;
    16     NEXT[tote]=FIR[u];
    17     FIR[u]=tote++;
    18     
    19     TO[tote]=u;
    20     CAP[tote]=0;
    21     NEXT[tote]=FIR[v];
    22     FIR[v]=tote++;
    23 }
    24 void bfs()
    25 {
    26     memset(gap,0,sizeof gap);
    27     memset(d,0,sizeof d);
    28     ++gap[d[T]=1];
    29     for(int i=1;i<=n;++i)cur[i]=FIR[i];
    30     int head=1,tail=1;
    31     q[1]=T;
    32     while(head<=tail)
    33     {
    34         int u=q[head++];
    35         for(int v=FIR[u];v!=-1;v=NEXT[v])
    36             if(!d[TO[v]])
    37                 ++gap[d[TO[v]]=d[u]+1],q[++tail]=TO[v];
    38     }
    39 }
    40 int dfs(int u,int fl)
    41 {
    42     if(u==T)return fl;
    43     int flow=0;
    44     for(int &v=cur[u];v!=-1;v=NEXT[v])
    45         if(CAP[v]&&d[u]==d[TO[v]]+1)
    46         {
    47             int Min=dfs(TO[v],min(fl,CAP[v]));
    48             flow+=Min,fl-=Min,CAP[v]-=Min,CAP[v^1]+=Min;
    49             if(!fl)return flow;
    50         }
    51     if(!(--gap[d[u]]))d[S]=n+1;
    52     ++gap[++d[u]],cur[u]=FIR[u];
    53     return flow;
    54 }
    55 int ISAP()
    56 {
    57     bfs();
    58     int ret=0;
    59     while(d[S]<=n)ret+=dfs(S,INF);
    60     return ret;
    61 }
    62 void init()
    63 {
    64     tote=0;
    65     memset(FIR,-1,sizeof FIR);
    66 }
    67 int in[maxn];
    68 int main()
    69 {
    70     int t;
    71     scanf("%d",&t);
    72     for(int ca=1;ca<=t;ca++)
    73     {
    74         init();
    75         memset(in,0,sizeof in);
    76         scanf("%d%d",&n,&m);
    77         for(int i=0,u,v,d,b;i<m;i++)
    78         {
    79             scanf("%d%d%d%d",&u,&v,&d,&b);
    80             add(u,v,b);
    81             in[u]-=d;
    82             in[v]+=d;
    83         }
    84         S=n+1,T=S+1,n+=2;
    85         int sum=0;
    86         for(int i=1;i<=n;i++)
    87             if(in[i]>0)
    88             {
    89                 add(S,i,in[i]);
    90                 sum+=in[i];
    91             }
    92             else if(in[i]<0)
    93                 add(i,T,-in[i]);
    94         printf("Case #%d: %s
    ",ca,ISAP()==sum?"happy":"unhappy");
    95     }
    96     return 0;
    97 }
  • 相关阅读:
    软件设计中的分层模式, 三层开发遵循的原则,分层开发的特点和优势
    什么是jsp?
    在Servlet中如何如何获取请求的参数?
    Servlet的加载(执行过程,原理)和生命周期
    servlet的注册
    什么是servlet容器
    什么是Servlet
    如何访问动态页面——URL
    什么是C/S? Client/server的简写,这里Server指的是DBServer。
    MVC(Model-View-Controller)软件设计模式
  • 原文地址:https://www.cnblogs.com/taozi1115402474/p/9627990.html
Copyright © 2011-2022 走看看