zoukankan      html  css  js  c++  java
  • PAT A1155 Heap Paths (30 分)——完全二叉树,层序遍历,特定dfs遍历

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))

    One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.

    Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives a positive integer N (1<N1,000), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.

    Output Specification:

    For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its left subtree.

    Finally print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all.

    Sample Input 1:

    8
    98 72 86 60 65 12 23 50
    

    Sample Output 1:

    98 86 23
    98 86 12
    98 72 65
    98 72 60 50
    Max Heap
    

    Sample Input 2:

    8
    8 38 25 58 52 82 70 60
    

    Sample Output 2:

    8 25 70
    8 25 82
    8 38 52
    8 38 58 60
    Min Heap
    

    Sample Input 3:

    8
    10 28 15 12 34 9 8 56
    

    Sample Output 3:

    10 15 8
    10 15 9
    10 28 34
    10 28 12 56
    Not Heap
    
     
    #include <stdio.h> 
    #include <algorithm>
    #include <set>
    #include <vector>
    #include <string>
    #include <iostream>
    #include <queue>
    using namespace std;
    const int maxn=2001;
    int tree[maxn] ;
    int n;
    vector<int> v;
    void dfs(int st){
        v.push_back(tree[st]);
        if(st*2>n){
            if(st<=n){
                for(int i=0;i<v.size();i++){
                    printf("%d%s",v[i],i!=v.size()-1?" ":"
    ");
                }
            }
        }
        else{
            //v.push_back(tree[st*2+1]);
            dfs(st*2+1);
            //v.pop_back();
            //v.push_back(tree[st*2]);
            dfs(st*2);
            
        }
        v.pop_back();
    }
    int main(){
        scanf("%d",&n);
        int ismax=1,ismin=1;
        for(int i=1;i<=n;i++){        
            scanf("%d",&tree[i]);        
        }
        dfs(1);
        for(int i=2;i<=n;i++){
            if(tree[i/2]>tree[i])ismin=0;
            if(tree[i/2]<tree[i])ismax=0;
        }
        if(ismin==1)printf("Min Heap
    ");
        else{
            printf("%s
    ",ismax==1?"Max Heap":"Not Heap");
        }
    
    }

    注意点:完全二叉树可以直接用数组存储,根节点下标为1,左子节点为2*root,右子节点2*root+1,当当前节点的左子节点编号大于n时,该节点即为叶节点。当节点下标大于n时,这个节点为空节点。

    路径遍历用dfs实现,用一个vector控制路径上的值,每递归一次记得弹出

    ---------------- 坚持每天学习一点点
  • 相关阅读:
    表格标签
    常用标签
    标签笔记
    基础标签与格式
    态度!
    如何修改数据 练习
    增删查练习
    登陆注册练习
    PHP 数据访问
    PHP 基础知识测试题 答案分析
  • 原文地址:https://www.cnblogs.com/tccbj/p/10406854.html
Copyright © 2011-2022 走看看