zoukankan      html  css  js  c++  java
  • R语言逐步多元回归模型分析长鼻鱼密度影响因素

     

     原文链接:http://tecdat.cn/?p=9564


     

    目录

    如何做多元回归

    逐步回归选择模型

    逐步程序

    定义最终模型

     方差分析

    预测值图

    检查模型的假设

    模型拟合标准

    将模型与似然比检验进行比较


    我从马里兰州生物流调查中提取了一些数据,以进行多元回归分析。数据因变量是每75米长的水流中长鼻鱼(Rhinichthys cataractae)的数量。自变量是河流流失的面积(英亩);氧(毫克/升);水流段的最大深度(以厘米为单位);硝酸盐浓度(毫克/升);硫酸盐浓度(毫克/升);以及采样日期的水温(以摄氏度为单位)。

    如何做多元回归

    多重相关

    数据集包含多个数字变量时,最好查看这些变量之间的相关性。原因之一是,可以轻松查看哪些自变量与该因变量相关。第二个原因是,如果要构建多元回归模型,则添加高度相关的自变量不太可能对模型有很大的改进。

    最后,值得看一下数字变量的分布。如果分布差异很大,则使用Kendall或Spearman相关性可能更合适。同样,如果自变量与因变量的分布不同,则可能需要对自变量进行转换。

    
    Data = read.table(textConnection(Input),header=TRUE)
    
    library(dplyr)
    
    Data.num = 
       select(Data,
              Longnose,
              Acerage,
              DO2,
              Maxdepth,
              NO3,
              SO4,
              Temp)
    
    library(FSA)
    
    headtail(Data.num)
    
    
       Longnose Acerage  DO2 Maxdepth  NO3   SO4 Temp
    
    1        13    2528  9.6       80 2.28 16.75 15.3
    
    2        12    3333  8.5       83 5.34  7.74 19.4
    
    3        54   19611  8.3       96 0.99 10.92 19.5
    
    66       20    4106 10.0       96 2.62  5.45 15.4
    
    67       38   10274  9.3       90 5.45 24.76 15.0
    
    68       19     510  6.7       82 5.25 14.19 26.5
    
     
    
     
    
    library(psych)
    
    corr.test(Data.num, 
              use = "pairwise",
              method="pearson",
              adjust="none",     # Can adjust p-values; see ?p.adjust for options
              alpha=.05)
    
     
    
    Correlation matrix
    
             Longnose Acerage   DO2 Maxdepth   NO3   SO4  Temp
    
    Longnose     1.00    0.35  0.14     0.30  0.31 -0.02  0.14
    
    Acerage      0.35    1.00 -0.02     0.26 -0.10  0.05  0.00
    
    DO2          0.14   -0.02  1.00    -0.06  0.27 -0.07 -0.32
    
    Maxdepth     0.30    0.26 -0.06     1.00  0.04 -0.05  0.00
    
    NO3          0.31   -0.10  0.27     0.04  1.00 -0.09  0.00
    
    SO4         -0.02    0.05 -0.07    -0.05 -0.09  1.00  0.08
    
    Temp         0.14    0.00 -0.32     0.00  0.00  0.08  1.00
    
    Sample Size
    
     
    
    Probability values (Entries above the diagonal are adjusted for multiple tests.)
    
             Longnose Acerage  DO2 Maxdepth  NO3  SO4 Temp
    
    Longnose     0.00    0.00 0.27     0.01 0.01 0.89 0.26
    
    Acerage      0.00    0.00 0.86     0.03 0.42 0.69 0.98
    
    DO2          0.27    0.86 0.00     0.64 0.02 0.56 0.01
    
    Maxdepth     0.01    0.03 0.64     0.00 0.77 0.69 0.97
    
    NO3          0.01    0.42 0.02     0.77 0.00 0.48 0.99
    
    SO4          0.89    0.69 0.56     0.69 0.48 0.00 0.52
    
    Temp         0.26    0.98 0.01     0.97 0.99 0.52 0.00
    
     
    
     

     

     

    逐步回归选择模型

    使用AIC(赤池信息标准)作为选择标准。可以使用选项k = log(n)代替BIC。 

    逐步程序

    
    
    Longnose ~ 1
    
    
    
               Df Sum of Sq    RSS    AIC
    
    + Acerage   1   17989.6 131841 518.75
    
    + NO3       1   14327.5 135503 520.61
    
    + Maxdepth  1   13936.1 135894 520.81
    
    <none>                  149831 525.45
    
    + Temp      1    2931.0 146899 526.10
    
    + DO2       1    2777.7 147053 526.17
    
    + SO4       1      45.3 149785 527.43
    
    .
    
    .
    
    < snip... more steps >
    
    .
    
    .
    
    Longnose ~ Acerage + NO3 + Maxdepth
    
    
    
               Df Sum of Sq    RSS    AIC
    
    <none>                  107904 509.13
    
    + Temp      1    2948.0 104956 509.24
    
    + DO2       1     669.6 107234 510.70
    
    - Maxdepth  1    6058.4 113962 510.84
    
    + SO4       1       5.9 107898 511.12
    
    - Acerage   1   14652.0 122556 515.78
    
    - NO3       1   16489.3 124393 516.80
    
    
    
    Call:
    
    lm(formula = Longnose ~ Acerage + NO3 + Maxdepth, data = Data)
    
    
    
    Coefficients:
    
    (Intercept)      Acerage          NO3     Maxdepth 
    
     -23.829067     0.001988     8.673044     0.336605 

    定义最终模型

    
    summary(model.final)      # Show coefficients, R-squared, and overall p-value
    
    
    
                  Estimate Std. Error t value Pr(>|t|)  
    
    (Intercept) -2.383e+01  1.527e+01  -1.560  0.12367  
    
    Acerage      1.988e-03  6.742e-04   2.948  0.00446 **
    
    Maxdepth     3.366e-01  1.776e-01   1.896  0.06253 .
    
    NO3          8.673e+00  2.773e+00   3.127  0.00265 **
    
    
    
    Multiple R-squared:  0.2798,  Adjusted R-squared:  0.2461
    
    F-statistic: 8.289 on 3 and 64 DF,  p-value: 9.717e-05

     方差分析

    
    
    Anova Table (Type II tests)
    
    
    
    Response: Longnose
    
              Sum Sq Df F value   Pr(>F)  
    
    Acerage    14652  1  8.6904 0.004461 **
    
    Maxdepth    6058  1  3.5933 0.062529 .
    
    NO3        16489  1  9.7802 0.002654 **
    
    Residuals 107904 64

    预测值图

     

     

    检查模型的假设

     

     线性模型中残差的直方图。这些残差的分布应近似正态。

     

    残差与预测值的关系图。残差应无偏且均等。 

                 

    模型拟合标准

    模型拟合标准可用于确定最合适的模型。使用AIC或可选的BIC。AICc是对AIC的一种调整,它更适合于观测值相对较少的数据集。AIC,AICc和BIC越小越好。

    在下面的例子中,我们只讨论了显著相关的种植面积MAXDEPTHNO3 。 

    
    $Models
    
       Formula                                    
    
    1  "Longnose ~ Acerage"                       
    
    2  "Longnose ~ Maxdepth"                      
    
    3  "Longnose ~ NO3"                           
    
    4  "Longnose ~ Acerage + Maxdepth"            
    
    5  "Longnose ~ Acerage + NO3"                 
    
    6  "Longnose ~ Maxdepth + NO3"                
    
    7  "Longnose ~ Acerage + Maxdepth + NO3"      
    
    8  "Longnose ~ Acerage + Maxdepth + NO3 + DO2"
    
    9  "Longnose ~ Acerage + Maxdepth + NO3 + SO4"
    
    10 "Longnose ~ Acerage + Maxdepth + NO3 + Temp"  
    
    
    
    $Fit.criteria
    
       Rank Df.res   AIC  AICc   BIC R.squared Adj.R.sq   p.value Shapiro.W Shapiro.p
    
    1     2     66 713.7 714.1 720.4   0.12010  0.10670 3.796e-03    0.7278 6.460e-10
    
    2     2     66 715.8 716.2 722.4   0.09301  0.07927 1.144e-02    0.7923 2.115e-08
    
    3     2     66 715.6 716.0 722.2   0.09562  0.08192 1.029e-02    0.7361 9.803e-10
    
    4     3     65 711.8 712.4 720.6   0.16980  0.14420 2.365e-03    0.7934 2.250e-08
    
    5     3     65 705.8 706.5 714.7   0.23940  0.21600 1.373e-04    0.7505 2.055e-09
    
    6     3     65 710.8 711.4 719.6   0.18200  0.15690 1.458e-03    0.8149 8.405e-08
    
    7     4     64 704.1 705.1 715.2   0.27980  0.24610 9.717e-05    0.8108 6.511e-08
    
    8     5     63 705.7 707.1 719.0   0.28430  0.23890 2.643e-04    0.8041 4.283e-08
    
    9     5     63 706.1 707.5 719.4   0.27990  0.23410 3.166e-04    0.8104 6.345e-08
    
    10    5     63 704.2 705.6 717.5   0.29950  0.25500 1.409e-04    0.8225 1.371e-07
    
    
    

    RPlot

    几个模型的AICc(修改后的Akaike信息标准)图。模型7最小化了AICc,因此被选为该模型中的最佳模型。

    将模型与似然比检验进行比较

    将模型与 平方和检验或似然比检验进行比较,以查看是否有其他项显着减少平方误差和 。

    
    
    Analysis of Variance Table
    
    
    
    Model 1: Longnose ~ Acerage + Maxdepth + NO3
    
    Model 2: Longnose ~ Acerage + Maxdepth
    
    
    
      Res.Df    RSS Df Sum of Sq      F   Pr(>F)  
    
    1     64 107904                               
    
    2     65 124393 -1    -16489 9.7802 0.002654 **
    
    
    
    
    
    Likelihood ratio test
    
    
    
    Model 1: Longnose ~ Acerage + Maxdepth + NO3
    
    Model 2: Longnose ~ Acerage + Maxdepth
    
    
    
      #Df  LogLik Df  Chisq Pr(>Chisq)  
    
    1   5 -347.05                       
    
    2   4 -351.89 -1 9.6701   0.001873 **
    
    
    
    
    
    Model 1: Longnose ~ Acerage + Maxdepth + NO3 + DO2
    
    Model 2: Longnose ~ Acerage + Maxdepth + NO3 + SO4
    
    Model 3: Longnose ~ Acerage + Maxdepth + NO3 + Temp
    
    Model A: Longnose ~ Acerage + Maxdepth + NO3
    
    
    
        DfO      RSSO DfA      RSSA Df        SS      F Pr(>F)
    
    1vA  63 107234.38  64 107903.97 -1   -669.59 0.3934 0.5328
    
    2vA  63 107898.06  64 107903.97 -1     -5.91 0.0035 0.9533
    
    3vA  63 104955.97  64 107903.97 -1  -2948.00 1.7695 0.1882
    
    
    
    
    
    
    Model 1: Longnose ~ Acerage + Maxdepth + NO3 + DO2
    
    Model 2: Longnose ~ Acerage + Maxdepth + NO3 + SO4
    
    Model 3: Longnose ~ Acerage + Maxdepth + NO3 + Temp
    
    Model A: Longnose ~ Acerage + Maxdepth + NO3
    
    
    
        DfO    logLikO DfA    logLikA Df     logLik  Chisq Pr(>Chisq)
    
    1vA  63 -346.83881  64 -347.05045 -1    0.21164 0.4233     0.5153
    
    2vA  63 -347.04859  64 -347.05045 -1    0.00186 0.0037     0.9513
    
    3vA  63 -346.10863  64 -347.05045 -1    0.94182 1.8836     0.1699

    如果您有任何疑问,请在下面发表评论。 

  • 相关阅读:
    堆和栈的区别
    熟悉熟悉常用的几个算法用JS的实现
    JS设置CSS样式的几种方式
    javascript的基本语法、数据结构
    DOM的概念及子节点类型
    三列自适应布局
    Javascript中括号“[]”的多义性
    Javascript中大括号“{}”的多义性
    Javascript小括号“()”的多义性
    JavaScript 开发者经常忽略或误用的七个基础知识点
  • 原文地址:https://www.cnblogs.com/tecdat/p/12054857.html
Copyright © 2011-2022 走看看