zoukankan      html  css  js  c++  java
  • 拓端数据tecdat|matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类

    原文链接:http://tecdat.cn/?p=19751

    本示例说明如何使用长短期记忆(LSTM)网络对序列数据进行分类。

    要训​​练深度神经网络对序列数据进行分类,可以使用LSTM网络。LSTM网络使您可以将序列数据输入网络,并根据序列数据的各个时间步进行预测。

    本示例使用日语元音数据集。此示例训练LSTM网络来识别给定时间序列数据的说话者,该时间序列数据表示连续讲话的两个日语元音。训练数据包含九位发言人的时间序列数据。每个序列具有12个特征,并且长度不同。数据集包含270个训练观察和370个测试观察。

    加载序列数据

    加载日语元音训练数据。 XTrain 是包含长度可变的维度12的270个序列的单元阵列。 Y 是标签“ 1”,“ 2”,...,“ 9”的分类向量,分别对应于九个扬声器。中的条目  XTrain 是具有12行(每个要素一行)和不同列数(每个时间步长一列)的矩阵。

    1.  
      XTrain(1:5)
    2.  
      ans=1 cell array
    3.  
      {12x20 double}
    4.  
      {12x26 double}
    5.  
      {12x22 double}
    6.  
      {12x20 double}
    7.  
      {12x21 double}

    可视化图中的第一个时间序列。每行对应一个特征。

    1.  
      figure
    2.  
      plot(Train')
    3.  
      xlabel("时间步长")
    4.  
      title("训练样本 1")
    5.  
      numFeatures = size(XTrain{1},1);
    6.  
      legend("特征 "

    准备填充数据

    在训练过程中,默认情况下,该软件默认将训练数据分成小批并填充序列,以使它们具有相同的长度。太多的填充可能会对网络性能产生负面影响。

    为防止训练过程增加太多填充,您可以按序列长度对训练数据进行排序,并选择小批量的大小,以使小批量中的序列具有相似的长度。下图显示了对数据进行排序之前和之后的填充序列的效果。

    获取每个观察的序列长度。

    按序列长度对数据进行排序。

    在条形图中查看排序的序列长度。

    1.  
      figure
    2.  
      bar(sequenceLengths)
    3.  
      ylim([0 30])
    4.  
      xlabel("序列")
    5.  
      ylabel("长度")
    6.  
      title("排序后数据")

    选择大小为27的小批量可均匀划分训练数据并减少小批量中的数量。下图说明了添加到序列中的填充量。

    定义LSTM网络架构

    定义LSTM网络体系结构。将输入大小指定为大小为12的序列(输入数据的大小)。指定具有100个隐藏单元的双向LSTM层,并输出序列的最后一个元素。最后,通过包括大小为9的完全连接层,其后是softmax层和分类层,来指定九个类。

    如果可以在预测时使用完整序列,则可以在网络中使用双向LSTM层。双向LSTM层在每个时间步都从完整序列中学习。例如,如果您无法在预测时使用整个序列,比如一次预测一个时间步长时,请改用LSTM层。

    1.  
       
    2.  
      layers =
    3.  
      5x1 Layer array with layers:
    4.  
       
    5.  
      1 '' Sequence Input Sequence input with 12 dimensions
    6.  
      2 '' BiLSTM BiLSTM with 100 hidden units
    7.  
      3 '' Fully Connected 9 fully connected layer
    8.  
      4 '' Softmax softmax
    9.  
      5 '' Classification Output crossentropyex

    现在,指定训练选项。将优化器指定为  'adam',将梯度阈值指定为1,将最大历元数指定为100。要减少小批量中的填充量,请选择27的小批量大小。与最长序列的长度相同,请将序列长度指定为  'longest'。为确保数据仍按序列长度排序,请指定从不对数据进行随机排序。

    由于批处理的序列短,因此训练更适合于CPU。指定  'ExecutionEnvironment' 为  'cpu'。要在GPU上进行训练(如果有),请将设置  'ExecutionEnvironment' 为  'auto' (这是默认值)。

    训练LSTM网络

    使用指定的训练选项来训练LSTM网络  trainNetwork

    测试LSTM网络

    加载测试集并将序列分类为扬声器。

    加载日语元音测试数据。 XTest 是包含370个长度可变的维度12的序列的单元阵列。 YTest 是标签“ 1”,“ 2”,...“ 9”的分类向量,分别对应于九个扬声器。

    1.  
      XTest(1:3)
    2.  
      ans=1 cell array
    3.  
      {12x19 double}
    4.  
      {12x17 double}
    5.  
      {12x19 double}

    LSTM网络  net 是使用相似长度的序列进行训练的。确保测试数据的组织方式相同。按序列长度对测试数据进行排序。

    分类测试数据。要减少分类过程引入的数据量,请将批量大小设置为27。要应用与训练数据相同的填充,请将序列长度指定为  'longest'

    计算预测的分类准确性。

    1.  
      acc = sum(YPred == YTest)./numel(YTest)
    2.  
      acc = 0.9730

    最受欢迎的见解

    1.用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类

    2.Python中利用长短期记忆模型LSTM进行时间序列预测分析 – 预测电力消耗数据

    3.python在Keras中使用LSTM解决序列问题

    4.Python中用PyTorch机器学习分类预测银行客户流失模型

    5.R语言多元Copula GARCH 模型时间序列预测

    6.在r语言中使用GAM(广义相加模型)进行电力负荷时间序列分析

    7.R语言中ARMA,ARIMA(Box-Jenkins),SARIMA和ARIMAX模型用于预测时间序列数

    8.R语言估计时变VAR模型时间序列的实证研究分析案例

    9.用广义加性模型GAM进行时间序列分析

    ▍关注我们 【大数据部落】第三方数据服务提供商,提供全面的统计分析与数据挖掘咨询服务,为客户定制个性化的数据解决方案与行业报告等。 ▍咨询链接:http://y0.cn/teradat ▍联系邮箱:3025393450@qq.com
  • 相关阅读:
    JavaScript高级程序设计
    昨天听了林某的建议,开了自己的博客
    Unity是什么?
    依赖注入
    NHibernate 01 [简述]
    C#Delegate.Invoke、Delegate.BeginInvoke And Control.Invoke、Control.BeginInvoke
    C#调用http请求,HttpWebRequest添加http请求头信息
    JUnit入门笔记
    Spring:利用ApplicationContextAware装配Bean
    Java线程安全synchronize学习
  • 原文地址:https://www.cnblogs.com/tecdat/p/14396971.html
Copyright © 2011-2022 走看看