zoukankan      html  css  js  c++  java
  • 强连通分量 Tarjan

    转载来自http://www.cnblogs.com/pony1993/archive/2012/08/07/2627344.html

    以及https://www.byvoid.com/blog/scc-tarjan/                                         2位大神的精华集合

    有向图强连通分量

    在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。简称SCC

    1、强连通图。在一个强连通图中,任意两个点都通过一定路径互相连通。比如图一是一个强连通图,而图二不是。因为没有一条路使得点4到达点1、2或3。

     

    2、强连通分量。在一个非强连通图中极大的强连通子图就是该图的强连通分量。比如图三中子图{1,2,3,5}是一个强连通分量,子图{4}是一个强连通分量。

                                                                                                         

    3.

    下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

    image

    直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M)。更好的方法是Kosaraju算法或Tarjan算法,两者的时间复杂度都是O(N+M)。本文介绍的是Tarjan算法

    Tarjan算法

    其实,tarjan算法的基础是DFS。我们准备两个数组Low和Dfn。Low数组是一个标记数组,记录该点所在的强连通子图所在搜索子树的根节点的Dfn值(很绕嘴,往下看你就会明白),Dfn数组记录搜索到该点的时间,也就是第几个搜索这个点的。根据以下几条规则,经过搜索遍历该图(无需回溯)和对栈的操作,我们就可以得到该有向图的强连通分量。 

    1、数组的初始化:当首次搜索到点p时,Dfn与Low数组的值都为到该点的时间。

    2、堆栈:每搜索到一个点,将它压入栈顶。

    3、当点p有与点p’相连时,如果此时(时间为dfn[p]时)p’不在栈中,p的low值为两点的low值中较小的一个。

    4、当点p有与点p’相连时,如果此时(时间为dfn[p]时)p’在栈中,p的low值为p的low值和p’的dfn值中较小的一个。

    就是

    定义dfn(u)为节点u搜索的次序编号(时间戳),low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。由定义可以得出,

    low(u)=Min
    {
        DFN(u),
        Low(v),(u,v)为树枝边,u为v的父节点
        DFN(v),(u,v)为指向栈中节点的后向边(非横叉边)
    }

    当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。


    5、每当搜索到一个点经过以上操作后(也就是子树已经全部遍历)的low值等于dfn值,则将它以及在它之上的元素弹出栈。这些出栈的元素组成一个强连通分量。

    6、继续搜索(或许会更换搜索的起点,因为整个有向图可能分为两个不连通的部分),直到所有点被遍历。

          由于每个顶点只访问过一次,每条边也只访问过一次,我们就可以在O(n+m)的时间内求出有向图的强连通分量。但是,这么做的原因是什么呢?

     

    Tarjan算法的操作原理如下:

    1、Tarjan算法基于定理:在任何深度优先搜索中,同一强连通分量内的所有顶点均在同一棵深度优先搜索树中。也就是说,强连通分量一定是有向图的某个深搜树子树。

    2、可以证明,当一个点既是强连通子图Ⅰ中的点,又是强连通子图Ⅱ中的点,则它是强连通子图Ⅰ∪Ⅱ中的点。

    3、这样,我们用low值记录该点所在强连通子图对应的搜索子树的根节点的Dfn值。注意,该子树中的元素在栈中一定是相邻的,且根节点在栈中一定位于所有子树元素的最下方。

    4、强连通分量是由若干个环组成的。所以,当有环形成时(也就是搜索的下一个点已在栈中),我们将这一条路径的low值统一,即这条路径上的点属于同一个强连通分量。

    5、如果遍历完整个搜索树后某个点的dfn值等于low值,则它是该搜索子树的根。这时,它以上(包括它自己)一直到栈顶的所有元素组成一个强连通分量。


    接下来是对算法流程的演示。

    从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

    image

    返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

    image

    返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

    image

    继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

    image

    至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

    可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

    求有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与求无向图的双连通分量(割点、桥)的Tarjan算法也有着很深的联系。学习该Tarjan算法,也有助于深入理解求双连通分量的Tarjan算法,两者可以类比、组合理解。

    求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法,以及求最近公共祖先的离线Tarjan算法,在此对Tarjan表示崇高的敬意。

    模板1

    1 #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <stack>
    #define max(a,b) (a>b?a:b)
    #define min(a,b) (a>b?b:a)
    using namespace std;
    
    const int N=1001;
    int time=1;
    int low[N],dfn[N];
    bool instack[N];
    stack<int>st;
    
    struct LIST
    {
        int v;
        LIST *next;
    };
    LIST *head[N]={NULL};
    
    void tarjan(int v)/*tarjan求强连通分支*/
    {
        dfn[v]=low[v]=time++;/*标记点v的DFS遍历序号*/
        st.push(v);/*将点v入栈*/
        instack[v]=true;/*标记点v已经在栈中*/
        for(LIST *p=head[v];p!=NULL;p=p->next)/*遍历V能直接到达的点*/
        {
            if(!dfn[p->v])/*如果v的邻接点没有入过栈*/
            {
                tarjan(p->v);
                low[v]=min(low[v],low[p->v]);/*如果v能直接到达的这个点没在栈中,v的最早祖先为他们中的较小值*/
            }
            else if(instack[p->v])/*如果在栈中*/
                low[v]=min(low[v],dfn[p->v]);/*如果在栈中,则v的最早祖先是他的序号和那个点的序号较小的*/
        }
        if(dfn[v]==low[v])/*如果dfn[v]和low[v]相等,则说明v点是其所属强连通分支DFS遍历起点,这个强连通分支所有点都在v点之上*/
        {
            cout<<"{ ";
            do
            {
                v=st.top();
                st.pop();
                instack[v]=false;
                cout<<v<<' ';
            }while(dfn[v]!=low[v]);
            cout<<"}"<<endl;        
        }
    }
    
    int main()
    {
        int i,j,n,m;
        cin>>n;
        while(!st.empty())
            st.pop();
        memset(dfn,0,sizeof(dfn));
        memset(instack,false,sizeof(instack));
        for(i=0;i<=n;i++)
            head[i]=NULL;
        for(i=1;i<=n;i++)
        {            
            cin>>m;//i的邻接点数量
            //输入每个邻接点编号
            LIST *rear=head[i];
            for(j=0;j<m;j++)/*创建邻接表*/
            {
                if(!j)
                {
                    rear=new LIST;
                    head[i]=rear;
                }
                else
                {
                    rear->next=new LIST;
                    rear=rear->next;
                }
                rear->next=NULL;
                cin>>rear->v;
            }
        }
        for(i=1;i<=n;i++)
            if(!dfn[i])/*如果i没有入过栈*/
                tarjan(i);
        return 0;
    }

    模板2

    void tarjan(int i)
    {
        int j;
        DFN[i]=LOW[i]=++Dindex;
        instack[i]=true;
        Stap[++Stop]=i;
        for (edge *e=V[i];e;e=e->next)
        {
            j=e->t;
            if (!DFN[j])
            {
                tarjan(j);
                if (LOW[j]<LOW[i])
                    LOW[i]=LOW[j];
            }
            else if (instack[j] && DFN[j]<LOW[i])
                LOW[i]=DFN[j];
        }
        if (DFN[i]==LOW[i])
        {
            Bcnt++;
            do
            {
                j=Stap[Stop--];
                instack[j]=false;
                Belong[j]=Bcnt;
            }
            while (j!=i);
        }
    }
    void solve()
    {
        int i;
        Stop=Bcnt=Dindex=0;
        memset(DFN,0,sizeof(DFN));
        for (i=1;i<=N;i++)
            if (!DFN[i])
                tarjan(i);
    }

    精华的汇聚~~~~~~


  • 相关阅读:
    SpringBoot2 application.properties方式加载配置文件
    php第三十节课
    php第二十九节课
    php第二十八节课
    php第二十七节课
    php第二十六节课
    php第二十五节课
    php第二十四节课
    DBDA
    php第二十三节课
  • 原文地址:https://www.cnblogs.com/tenlee/p/4420114.html
Copyright © 2011-2022 走看看