zoukankan      html  css  js  c++  java
  • HDU 5288 OO’s Sequence(2015多校联合)

    题目链接:戳我

    题目大意:

    f(l, r)代表一个l,r区间内,符合任选i,j (l <= j <= r && j != i),有ai % aj != 0的i的个数
    求 ni=nj=i  f(i,j)  mo(109+7)

    样例解释

    5 即为n,代表有n个数,n <= 105
    1 2 3 4 5 分别为上面的 n 个数,0 < ai <= 10000
    f(1,1) = {1} = 1; f(1,2) = {1} = 1; f(1,3) = {1} = 1; f(1,4) = {1} = 1; f(1,5) = {1} = 1
    f(2,2) = {2} =1; f(2,3) = {2,3} = 2; f(2,4) = {2,3} = 2; f(2,5) = {2,3,5} = 3
    f(3,3) = {3} = 1; f(3,4) = {3,4} = 2; f(3,5) = {3,4,5} = 3;
    f(4,4) = {4} = 1; f(4, 5) = {4,5} = 2;
    f(5,5) = {5} = 1;
    故所有加起来为23

    解题思路

    分析:数组长度为105,而每个数不超多 10000
    假设一个数的位置是 pos 值为x,那个在x左侧和x最近的属于x的因子的位置是l,在x右侧和x最近的属于x因子的位置是r,那么在(l+1, r-1)这个区间内,任选左区间一个位置ll,在任选右区间一个位置rr,那么x必为此区间符合条件的一个数
    故 num=(xl)(rx)
    只需枚举每一个位置,极其l,r即可

    思路:

    可以先预处理10000个数的每个数的因子,在枚举每一个位置的时候即可知道最左的因子和最右的因子了

    代码:

    //Author LJH
    //www.cnblogs.com/tenlee
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cctype>
    #include <cmath>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <stack>
    #include <map>
    #define clc(a, b) memset(a, b, sizeof(a))
    using namespace std;
    
    const int inf = 0x3f;
    const int INF = 0x3f3f3f3f;
    const int maxn = 1e5+5;
    const long long mod = 1e9+7;
    int a[maxn], ha[maxn], l[maxn], r[maxn], pre[maxn];
    vector<int> v[maxn];
    void Init()
    {
        v[1].push_back(1);
        for(int i = 2; i <= maxn; i++)
        {
            for(int j = 2; i*j <= maxn; j++)
            {
               v[j*i].push_back(i); 
            }
            v[i].push_back(1);
            v[i].push_back(i);
        }
    }
    
    int main()
    {
        //freopen("1001.in", "r", stdin);
        int n, i, j, k = 0;
        long long ans;
        Init();
        while(~scanf("%d", &n))
        {
            for(i = 1; i <= n; i++)       
            {
                scanf("%d", &a[i]);
            }
            clc(pre, 0);
            for(i = 1; i <= n; i++)
            {
                l[i] = 1;
                k = a[i];
                for(j = 0; j < (int)v[k].size(); j++)
                {
                    if(pre[v[k][j]] != 0)
                    {
                        l[i] = max(l[i], pre[v[k][j]] + 1);
                    }
                }
                //if(a[i] == a[i-1]) l[i] = i;
                pre[a[i]] = i;
            }
            clc(pre, 0);
            for(i = n; i > 0; i--)
            {
                r[i] = n;
                k = a[i];
                for(j = 0; j < (int)v[k].size(); j++)
                {
                    if(pre[v[k][j]] != 0)
                    {
                        r[i] = min(r[i], pre[v[k][j]] - 1);
                    }
                }
                //if(a[i]==a[i+1]) r[i] = i;
                pre[a[i]] = i;
            }
            ans = 0;
            for(i = 1; i <= n; i++)
            {
                ans = (ans + (long long)( i - l[i] + 1) * (long long)(r[i] - i + 1) % mod) % mod;
                if(ans > mod) ans -= mod;
            }
            printf("%lld
    ", ans % mod);
        }
        return 0;
    }
    

    标程代码:
    1232ms

    #include<cstdio>
    #include<iostream>
    #include<vector>
    #define N 100010
    #define P 1000000007
    using namespace std;
    int n,i,a[N],j,t,q[N];
    int l[N],tmp,r[N];
    long long a1,a2,ans;
    vector<int> vec[10010];
    int main()
    {
            freopen("a.in","r",stdin);
        freopen("a.out","w",stdout);
        
        while (scanf("%d",&n)!=EOF)
        {
        for (i=101;i<=10000;i++)
        vec[i].clear();
        for (i=1;i<=n;i++)
        {
            l[i]=0;
            r[i]=n+1;
            scanf("%d",&a[i]);
            if (a[i]>100)
            vec[a[i]].push_back(i);
        }
        
        for (j=1;j<=100;j++)
        {
            tmp=0;
            for (i=1;i<=n;i++)
            {
                if (a[i]%j==0) l[i]=max(l[i],tmp);
                if (a[i]==j)
                tmp=i;
            }
            
            tmp=n+1;
            for (i=n;i>=1;i--)
            {
                if (a[i]%j==0) r[i]=min(r[i],tmp);
                if (a[i]==j)
                tmp=i;
            }
        }
        
        for (i=101;i<=10000;i++)
        q[i]=0;
        for (i=1;i<=n;i++)
        if (a[i]>100)
        {
            for (j=a[i];j<=10000;j=j+a[i])
            while ((q[j]<vec[j].size())&&(vec[j][q[j]]<i))
            {
                  r[vec[j][q[j]]]=min(r[vec[j][q[j]]],i);
                  if ((q[j]<vec[j].size()-1)&&(vec[j][q[j]+1]<i))
                  q[j]++;
                  else
                  break;
            }
        }
      
        for (i=101;i<=10000;i++)
        q[i]=vec[i].size()-1;
        
        for (i=n;i>=1;i--)
        if (a[i]>100)
        {
            for (j=a[i];j<=10000;j=j+a[i])
            while ((q[j]>=0)&&(vec[j][q[j]]>i))
            {
                  l[vec[j][q[j]]]=max(l[vec[j][q[j]]],i);
                  if ((q[j]>0)&&(vec[j][q[j]-1]>i))
                  q[j]--;
                  else
                  break;
            }
        }
        ans=0;
        for (i=1;i<=n;i++)
        {
            a1=r[i]-i;
            a2=i-l[i];
            ans=(ans+a1*a2)%P;
        }
       printf("%I64d
    ",ans);
        }   
    }
    

      

  • 相关阅读:
    this_is_flag
    攻防世界-misc-如来十三掌
    攻防世界-misc-pdf
    nextcloud取消新用户的默认文件
    nextcloud开放注册-添加注册功能
    图片马制作
    Npoi Web 项目中(XSSFWorkbook) 导出出现无法访问已关闭的流的解决方法
    VS2017 如何安装水晶报表 VS2017 如何下载相应版本的水晶报表 VS2017 水晶报表 中文乱码
    js 带有返回值的 匿名方法
    varchar nvarchar 设计长度时 设计成 (2^n)-1 的好处
  • 原文地址:https://www.cnblogs.com/tenlee/p/4669874.html
Copyright © 2011-2022 走看看