zoukankan      html  css  js  c++  java
  • tf.contrib.seq2seq.sequence_loss example:seqence loss 实例代码

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    
    import tensorflow as tf
    
    import numpy as np
    
    params=np.random.normal(loc=0.0,scale=1.0,size=[10,10])
    
    encoder_inputs=tf.placeholder(dtype=tf.int32,shape=[10,10])
    decoder_inputs=tf.placeholder(dtype=tf.int32,shape=[10,10])
    
    logits=tf.placeholder(dtype=tf.float32,shape=[10,10,10])
    targets=tf.placeholder(dtype=tf.int32,shape=[10,10])
    weights=tf.placeholder(dtype=tf.float32,shape=[10,10])
    
    
    train_encoder_inputs=np.ones(shape=[10,10],dtype=np.int32)
    train_decoder_inputs=np.ones(shape=[10,10],dtype=np.int32)
    train_weights=np.ones(shape=[10,10],dtype=np.float32)
    
    num_encoder_symbols=10
    num_decoder_symbols=10
    embedding_size=10
    cell=tf.nn.rnn_cell.BasicLSTMCell(10)
    
    def seq2seq(encoder_inputs,decoder_inputs,cell,num_encoder_symbols,num_decoder_symbols,embedding_size):
    	encoder_inputs = tf.unstack(encoder_inputs, axis=0)
    	decoder_inputs = tf.unstack(decoder_inputs, axis=0)
    	results,states=tf.contrib.legacy_seq2seq.embedding_rnn_seq2seq(
        encoder_inputs,
        decoder_inputs,
        cell,
        num_encoder_symbols,
        num_decoder_symbols,
        embedding_size,
        output_projection=None,
        feed_previous=False,
        dtype=None,
        scope=None
    )
    	return results
    
    def get_loss(logits,targets,weights):
    	loss=tf.contrib.seq2seq.sequence_loss(
    		logits,
    		targets=targets,
    		weights=weights
    	)
    	return loss
    
    results=seq2seq(encoder_inputs,decoder_inputs,cell,num_encoder_symbols,num_decoder_symbols,embedding_size)
    logits=tf.stack(results,axis=0)
    print(logits)
    loss=get_loss(logits,targets,weights)
    
    with tf.Session() as sess:
    	sess.run(tf.global_variables_initializer())
    	results_value=sess.run(results,feed_dict={encoder_inputs:train_encoder_inputs,decoder_inputs:train_decoder_inputs})
    	print(type(results_value[0]))
    	print(len(results_value))
    	cost = sess.run(loss, feed_dict={encoder_inputs: train_encoder_inputs, targets: train_decoder_inputs,
    	                                 weights:train_weights,decoder_inputs:train_decoder_inputs})
    	print(cost)
    
    
    

    更多教程:http://www.tensorflownews.com/

  • 相关阅读:
    《百闻牌》
    unity插件开发:dos(cmd)命令输入窗口
    Unity插件开发:使用ScriptedImporter优化Lua文件导入
    崩坏3 渲染分析和PBR展示
    Unity插件开发:SerializedObject/SerializedProperty——查找引用的资源
    Unity插件开发:PrefabUtility(二)--Prefab实例批量Apply
    ml-agent v0.3 win10安装和实践
    Unity文件、文件引用、meta详解
    Unity开发:开启Unity项目中VS工程的属性面板
    Unity宏+RSP文件定义宏
  • 原文地址:https://www.cnblogs.com/tensorflownews/p/7309321.html
Copyright © 2011-2022 走看看