zoukankan      html  css  js  c++  java
  • HBase API操作

    环境准备

    新建项目后在pom.xml中添加依赖:

    <dependency>
        <groupId>org.apache.hbase</groupId>
        <artifactId>hbase-server</artifactId>
        <version>1.3.1</version>
    </dependency>
    
    <dependency>
        <groupId>org.apache.hbase</groupId>
        <artifactId>hbase-client</artifactId>
        <version>1.3.1</version>
    </dependency>
    
    <dependency>
        <groupId>jdk.tools</groupId>
        <artifactId>jdk.tools</artifactId>
        <version>1.8</version>
        <scope>system</scope>


    <systemPath>${JAVA_HOME}/lib/tools.jar</systemPath> </dependency>

    2 HBaseAPI

    2.1 获取Configuration对象

    public static Configuration conf;
    static{
        //使用HBaseConfiguration的单例方法实例化
        conf = HBaseConfiguration.create();
    conf.set("hbase.zookeeper.quorum", "192.168.9.102");
    conf.set("hbase.zookeeper.property.clientPort", "2181");
    }

    2.2 判断表是否存在

    public static boolean isTableExist(String tableName) throws MasterNotRunningException,
     ZooKeeperConnectionException, IOException{
        //在HBase中管理、访问表需要先创建HBaseAdmin对象
    //Connection connection = ConnectionFactory.createConnection(conf);
    //HBaseAdmin admin = (HBaseAdmin) connection.getAdmin();
        HBaseAdmin admin = new HBaseAdmin(conf);
        return admin.tableExists(tableName);
    } 

    2.3 创建表

    public static void createTable(String tableName, String... columnFamily) throws
     MasterNotRunningException, ZooKeeperConnectionException, IOException{
        HBaseAdmin admin = new HBaseAdmin(conf);
        //判断表是否存在
        if(isTableExist(tableName)){
            System.out.println("表" + tableName + "已存在");
            //System.exit(0);
        }else{
            //创建表属性对象,表名需要转字节
            HTableDescriptor descriptor = new HTableDescriptor(TableName.valueOf(tableName));
            //创建多个列族
            for(String cf : columnFamily){
                descriptor.addFamily(new HColumnDescriptor(cf));
            }
            //根据对表的配置,创建表
            admin.createTable(descriptor);
            System.out.println("表" + tableName + "创建成功!");
        }
    }

    2.4 删除表

    public static void dropTable(String tableName) throws MasterNotRunningException,
     ZooKeeperConnectionException, IOException{
        HBaseAdmin admin = new HBaseAdmin(conf);
        if(isTableExist(tableName)){
            admin.disableTable(tableName);
            admin.deleteTable(tableName);
            System.out.println("表" + tableName + "删除成功!");
        }else{
            System.out.println("表" + tableName + "不存在!");
        }
      

    2.5 向表中插入数据

    public static void addRowData(String tableName, String rowKey, String columnFamily, String
     column, String value) throws IOException{
        //创建HTable对象
        HTable hTable = new HTable(conf, tableName);
        //向表中插入数据
        Put put = new Put(Bytes.toBytes(rowKey));
        //向Put对象中组装数据
        put.add(Bytes.toBytes(columnFamily), Bytes.toBytes(column), Bytes.toBytes(value));
        hTable.put(put);
        hTable.close();
        System.out.println("插入数据成功");
    }

    2.6 删除多行数据

    public static void deleteMultiRow(String tableName, String... rows) throws IOException{
        HTable hTable = new HTable(conf, tableName);
        List<Delete> deleteList = new ArrayList<Delete>();
        for(String row : rows){
            Delete delete = new Delete(Bytes.toBytes(row));
            deleteList.add(delete);
        }
        hTable.delete(deleteList);
        hTable.close();
    }
    public static void deleteMultiRow(String tableName, String... rows) throws IOException{
        HTable hTable = new HTable(conf, tableName);
        List<Delete> deleteList = new ArrayList<Delete>();
        for(String row : rows){
            Delete delete = new Delete(Bytes.toBytes(row));
            deleteList.add(delete);
        }
        hTable.delete(deleteList);
        hTable.close();
    }
    View Code

    2.7 获取所有数据

    public static void getAllRows(String tableName) throws IOException{
        HTable hTable = new HTable(conf, tableName);
        //得到用于扫描region的对象
        Scan scan = new Scan();
        //使用HTable得到resultcanner实现类的对象
        ResultScanner resultScanner = hTable.getScanner(scan);
        for(Result result : resultScanner){
            Cell[] cells = result.rawCells();
            for(Cell cell : cells){
                //得到rowkey
                System.out.println("行键:" + Bytes.toString(CellUtil.cloneRow(cell)));
                //得到列族
                System.out.println("列族" + Bytes.toString(CellUtil.cloneFamily(cell)));
                System.out.println("列:" + Bytes.toString(CellUtil.cloneQualifier(cell)));
                System.out.println("值:" + Bytes.toString(CellUtil.cloneValue(cell)));
            }
        }
    }

    2.8 获取某一行数据

    public static void getRow(String tableName, String rowKey) throws IOException{
        HTable table = new HTable(conf, tableName);
        Get get = new Get(Bytes.toBytes(rowKey));
        //get.setMaxVersions();显示所有版本
        //get.setTimeStamp();显示指定时间戳的版本
        Result result = table.get(get);
        for(Cell cell : result.rawCells()){
            System.out.println("行键:" + Bytes.toString(result.getRow()));
            System.out.println("列族" + Bytes.toString(CellUtil.cloneFamily(cell)));
            System.out.println("列:" + Bytes.toString(CellUtil.cloneQualifier(cell)));
            System.out.println("值:" + Bytes.toString(CellUtil.cloneValue(cell)));
            System.out.println("时间戳:" + cell.getTimestamp());
        }
    } 

    2.9 获取某一行指定“列族:列”的数据

    public static void getRowQualifier(String tableName, String rowKey, String family, String
     qualifier) throws IOException{
        HTable table = new HTable(conf, tableName);
        Get get = new Get(Bytes.toBytes(rowKey));
        get.addColumn(Bytes.toBytes(family), Bytes.toBytes(qualifier));
        Result result = table.get(get);
        for(Cell cell : result.rawCells()){
            System.out.println("行键:" + Bytes.toString(result.getRow()));
            System.out.println("列族" + Bytes.toString(CellUtil.cloneFamily(cell)));
            System.out.println("列:" + Bytes.toString(CellUtil.cloneQualifier(cell)));
            System.out.println("值:" + Bytes.toString(CellUtil.cloneValue(cell)));
        }
    }

     

    3 MapReduce

    通过HBase的相关JavaAPI,我们可以实现伴随HBase操作的MapReduce过程,比如使用MapReduce将数据从本地文件系统导入到HBase的表中,比如我们从HBase中读取一些原始数据后使用MapReduce做数据分析。

    3.1 官方HBase-MapReduce

    1.查看HBase的MapReduce任务的执行

    $ bin/hbase mapredcp
    

    2.环境变量的导入

    (1)执行环境变量的导入(临时生效,在命令行执行下述操作)

    $ export HBASE_HOME=/opt/module/hbase-1.3.1
    $ export HADOOP_HOME=/opt/module/hadoop-2.7.2
    $ export HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase mapredcp` 

    (2)永久生效:在/etc/profile配置

    export HBASE_HOME=/opt/module/hbase-1.3.1
    export HADOOP_HOME=/opt/module/hadoop-2.7.2

    并在hadoop-env.sh中配置:(注意:在for循环之后配)

    并在hadoop-env.sh中配置:(注意:在for循环之后配)
    export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:/opt/module/hbase/lib/*

    3.运行官方的MapReduce任务

    -- 案例一:统计Student表中有多少行数据

    $ /opt/module/hadoop-2.7.2/bin/yarn jar lib/hbase-server-1.3.1.jar rowcounter student
    

     

    -- 案例二:使用MapReduce将本地数据导入到HBase

    1)在本地创建一个tsv格式的文件:fruit.tsv

    1001    Apple    Red
    1002    Pear        Yellow
    1003    Pineapple    Yellow

    2)创建HBase表

    hbase(main):001:0> create 'fruit','info' 

    3)在HDFS中创建input_fruit文件夹并上传fruit.tsv文件

    $ /opt/module/hadoop-2.7.2/bin/hdfs dfs -mkdir /input_fruit/
    $ /opt/module/hadoop-2.7.2/bin/hdfs dfs -put fruit.tsv /input_fruit/

    4)执行MapReduce到HBase的fruit表中

    $ /opt/module/hadoop-2.7.2/bin/yarn jar lib/hbase-server-1.3.1.jar importtsv 
    -Dimporttsv.columns=HBASE_ROW_KEY,info:name,info:color fruit 
    hdfs://hadoop102:9000/input_fruit

    5)使用scan命令查看导入后的结果

    hbase(main):001:0> scan ‘fruit’

    3.2 自定义HBase-MapReduce1

    目标:将fruit表中的一部分数据,通过MR迁入到fruit_mr表中。

    分步实现:

    1.构建ReadFruitMapper类,用于读取fruit表中的数据

    import java.io.IOException;
    import org.apache.hadoop.hbase.Cell;
    import org.apache.hadoop.hbase.CellUtil;
    import org.apache.hadoop.hbase.client.Put;
    import org.apache.hadoop.hbase.client.Result;
    import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
    import org.apache.hadoop.hbase.mapreduce.TableMapper;
    import org.apache.hadoop.hbase.util.Bytes;
    
    public class ReadFruitMapper extends TableMapper<ImmutableBytesWritable, Put> {
    
        @Override
        protected void map(ImmutableBytesWritable key, Result value, Context context) 
        throws IOException, InterruptedException {
        //将fruit的name和color提取出来,相当于将每一行数据读取出来放入到Put对象中。
            Put put = new Put(key.get());
            //遍历添加column行
            for(Cell cell: value.rawCells()){
                //添加/克隆列族:info
                if("info".equals(Bytes.toString(CellUtil.cloneFamily(cell)))){
                    //添加/克隆列:name
                    if("name".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))){
                        //将该列cell加入到put对象中
                        put.add(cell);
                        //添加/克隆列:color
                    }else if("color".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))){
                        //向该列cell加入到put对象中
                        put.add(cell);
                    }
                }
            }
            //将从fruit读取到的每行数据写入到context中作为map的输出
            context.write(key, put);
        }
    }

    2. 构建WriteFruitMRReducer类,用于将读取到的fruit表中的数据写入到fruit_mr表中

    import java.io.IOException;
    import org.apache.hadoop.hbase.client.Put;
    import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
    import org.apache.hadoop.hbase.mapreduce.TableReducer;
    import org.apache.hadoop.io.NullWritable;
    
    public class WriteFruitMRReducer extends TableReducer<ImmutableBytesWritable, Put, NullWritable> {
        @Override
        protected void reduce(ImmutableBytesWritable key, Iterable<Put> values, Context context) 
        throws IOException, InterruptedException {
            //读出来的每一行数据写入到fruit_mr表中
            for(Put put: values){
                context.write(NullWritable.get(), put);
            }
        }
    }

    3.构建Fruit2FruitMRRunner extends Configured implements Tool用于组装运行Job任务

    //组装Job
        public int run(String[] args) throws Exception {
            //得到Configuration
            Configuration conf = this.getConf();
            //创建Job任务
            Job job = Job.getInstance(conf, this.getClass().getSimpleName());
            job.setJarByClass(Fruit2FruitMRRunner.class);
    
            //配置Job
            Scan scan = new Scan();
            scan.setCacheBlocks(false);
            scan.setCaching(500);
    
            //设置Mapper,注意导入的是mapreduce包下的,不是mapred包下的,后者是老版本
            TableMapReduceUtil.initTableMapperJob(
            "fruit", //数据源的表名
            scan, //scan扫描控制器
            ReadFruitMapper.class,//设置Mapper类
            ImmutableBytesWritable.class,//设置Mapper输出key类型
            Put.class,//设置Mapper输出value值类型
            job//设置给哪个JOB
            );
            //设置Reducer
            TableMapReduceUtil.initTableReducerJob("fruit_mr", WriteFruitMRReducer.class, job);
            //设置Reduce数量,最少1个
            job.setNumReduceTasks(1);
    
            boolean isSuccess = job.waitForCompletion(true);
            if(!isSuccess){
                throw new IOException("Job running with error");
            }
            return isSuccess ? 0 : 1;
        }

    4.主函数中调用运行该Job任务

    public static void main( String[] args ) throws Exception{
    Configuration conf = HBaseConfiguration.create();
    int status = ToolRunner.run(conf, new Fruit2FruitMRRunner(), args);
    System.exit(status);
    }

    5.打包运行任务

    $ /opt/module/hadoop-2.7.2/bin/yarn jar ~/softwares/jars/hbase-0.0.1-SNAPSHOT.jar
     com.z.hbase.mr1.Fruit2FruitMRRunner

    提示:运行任务前,如果待数据导入的表不存在,则需要提前创建。

    提示:maven打包命令:-P local clean package或-P dev clean package install(将第三方jar包一同打包,需要插件:maven-shade-plugin)

    3.3 自定义HBase-MapReduce2

    目标:实现将HDFS中的数据写入到HBase表中。

    分步实现:

    1.构建ReadFruitFromHDFSMapper于读取HDFS中的文件数据

    import java.io.IOException;
    
    import org.apache.hadoop.hbase.client.Put;
    import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
    import org.apache.hadoop.hbase.util.Bytes;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    public class ReadFruitFromHDFSMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, Put> {
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            //从HDFS中读取的数据
            String lineValue = value.toString();
            //读取出来的每行数据使用	进行分割,存于String数组
            String[] values = lineValue.split("	");
            
            //根据数据中值的含义取值
            String rowKey = values[0];
            String name = values[1];
            String color = values[2];
            
            //初始化rowKey
            ImmutableBytesWritable rowKeyWritable = new ImmutableBytesWritable(Bytes.toBytes(rowKey));
            
            //初始化put对象
            Put put = new Put(Bytes.toBytes(rowKey));
            
            //参数分别:列族、列、值  
            put.add(Bytes.toBytes("info"), Bytes.toBytes("name"),  Bytes.toBytes(name)); 
            put.add(Bytes.toBytes("info"), Bytes.toBytes("color"),  Bytes.toBytes(color)); 
            
            context.write(rowKeyWritable, put);
        }
    }

    2.构建WriteFruitMRFromTxtReducer类

    import java.io.IOException;
    import org.apache.hadoop.hbase.client.Put;
    import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
    import org.apache.hadoop.hbase.mapreduce.TableReducer;
    import org.apache.hadoop.io.NullWritable;
    
    public class WriteFruitMRFromTxtReducer extends TableReducer<ImmutableBytesWritable, Put, NullWritable> {
        @Override
        protected void reduce(ImmutableBytesWritable key, Iterable<Put> values, Context context) throws IOException, InterruptedException {
            //读出来的每一行数据写入到fruit_hdfs表中
            for(Put put: values){
                context.write(NullWritable.get(), put);
            }
        }
    }

    3.创建Txt2FruitRunner组装Job

    public int run(String[] args) throws Exception {
    //得到Configuration
    Configuration conf = this.getConf();
    
    //创建Job任务
    Job job = Job.getInstance(conf, this.getClass().getSimpleName());
    job.setJarByClass(Txt2FruitRunner.class);
    Path inPath = new Path("hdfs://hadoop102:9000/input_fruit/fruit.tsv");
    FileInputFormat.addInputPath(job, inPath);
    
    //设置Mapper
    job.setMapperClass(ReadFruitFromHDFSMapper.class);
    job.setMapOutputKeyClass(ImmutableBytesWritable.class);
    job.setMapOutputValueClass(Put.class);
    
    //设置Reducer
    TableMapReduceUtil.initTableReducerJob("fruit_mr", WriteFruitMRFromTxtReducer.class, job);
    
    //设置Reduce数量,最少1个
    job.setNumReduceTasks(1);
    
    boolean isSuccess = job.waitForCompletion(true);
    if(!isSuccess){
    throw new IOException("Job running with error");
    }
    
    return isSuccess ? 0 : 1;
    }

    4.调用执行Job

    public static void main(String[] args) throws Exception {
            Configuration conf = HBaseConfiguration.create();
            int status = ToolRunner.run(conf, new Txt2FruitRunner(), args);
            System.exit(status);
    }

    5.打包运行

    $ /opt/module/hadoop-2.7.2/bin/yarn jar hbase-0.0.1-SNAPSHOT.jar com.atguigu.hbase.mr2.Txt2FruitRunner

    提示:运行任务前,如果待数据导入的表不存在,则需要提前创建之。

    提示:maven打包命令:-P local clean package或-P dev clean package install(将第三方jar包一同打包,需要插件:maven-shade-plugin)

  • 相关阅读:
    个人不断学习的真正起因(值得收藏)——北漂18年(24)
    IPython基础使用_Round2
    IPython基础使用_Round2
    Mysql 创建查询用户
    8.11.3 Concurrent Inserts 并发插入:
    8.11.2 Table Locking Issues 表锁发生
    8.11.1 Internal Locking Methods
    Oracle timestamp
    报表引擎API开发入门— EJB程序数据源
    8.10.3 The MySQL Query Cache
  • 原文地址:https://www.cnblogs.com/tesla-turing/p/11668397.html
Copyright © 2011-2022 走看看