参考:https://blog.csdn.net/tichimi3375/article/details/82415412
中文翻译:https://www.celerycn.io/ https://blog.csdn.net/weixin_40475396/article/details/80439781
官网:http://docs.celeryproject.org/en/latest/index.html
注意事项:
1 cd到tasks.py同级目录中,执行命令
2 导入配置的一种方式
3 my_task.apply_async((2, 2), queue='my_queue', countdown=10) 任务my_task将会被发送到my_queue队列中,并且在发送10秒之后执行。
4
5
group: 一组任务并行执行,返回一组返回值,并可以按顺序检索返回值。
chain: 任务一个一个执行,一个执行完将执行return结果传递给下一个任务函数
from proj.tasks import my_task1 from proj.tasks import my_task2 from proj.tasks import my_task3 from celery import group # 将多个signature放入同一组中 my_group = group((my_task1.s(10, 10), my_task2.s(20, 20), my_task3.s(30, 30))) ret = my_group() # 执行组任务 print(ret.get()) # 输出每个任务结果
from proj.tasks import my_task1 from proj.tasks import my_task2 from proj.tasks import my_task3 from celery import chain # 将多个signature组成一个任务链 # my_task1的运行结果将会传递给my_task2 # my_task2的运行结果会传递给my_task3 my_chain = chain(my_task1.s(10, 10) | my_task2.s(20) | my_task3.s(30)) ret = my_chain() # 执行任务链 print(ret.get()) # 输出最终结果
6 my_task1.apply_async(queue='queue1')通过apply_aynsc()方法来设置任务发送到那个队列中
7 celery -A proj worker --loglevel=info -Q queue1,queue2 设置一个worker服务器处理两个队列中的任务
8 celery beat是一个调度器,它可以周期内指定某个worker来执行某个任务。
启动woker处理周期性任务: celery -A proj worker --loglevel=info --beat
beat_schedule = { 'every-5-minute': { 'task': 'proj.tasks.period_task', 'schedule': 5.0, 'args': (16, 16), }, 'add-every-monday-morning': { 'task': 'proj.tasks.period_task', 'schedule': crontab(hour=7, minute=30, day_of_week=1), 'args': (16, 16), }, }
9
from celery import Celery # 创建celery实例 app = Celery('demo') app.config_from_object('proj.celeryconfig') # 自动搜索任务 app.autodiscover_tasks(['proj'])
10 定义app时要指定名称,否则如下
当这个模块运行,任务将以前缀 __main__
命名,但是当该模块被其他进程引入来运行一个任务,这个任务的名称将以前缀 tasks
命名(即这个模块的真实名称)
【app名称不指定,则task的名称不固定,就不方便根据任务名称映射出实际任务函数】
from celery import Celery app = Celery() --app未指定名称 @app.task def add(x, y): return x + y if __name__ == '__main__': app.worker_main()
最佳实践如下:
>>> app = Celery('tasks') >>> app.main 'tasks' >>> @app.task ... def add(x, y): ... return x + y >>> add.name tasks.add
参考:https://blog.csdn.net/libing_thinking/article/details/78541171
11 客户端导入模块 myapp.tasks
时使用 .tasks
,而工作单元导入模块使用 myapp.tasks
, 他们产生的名称会不匹配,任务调用时工作单元会报 NotRegistered
错误。
>>> from project.myapp.tasks import mytask >>> mytask.name 'project.myapp.tasks.mytask' >>> from myapp.tasks import mytask >>> mytask.name 'myapp.tasks.mytask'
基于这一点,你必须在导入模块时保持一致,这也是 python 的最佳实践
参考:https://blog.csdn.net/libing_thinking/article/details/78547816
12
celery_demo # 项目根目录 ├── celery_app # 存放 celery 相关文件 │ ├── __init__.py │ ├── celeryconfig.py # 配置文件 │ ├── task1.py # 任务文件 1 │ └── task2.py # 任务文件 2 └── client.py # 应用程序
执行 python client.py 就生产出了task
在celery_demo 目录下执行 celery worker -A celery_app -l info -Q email 就执行了任务
13
https://www.cnblogs.com/kangoroo/p/6588615.html
from celery.app.task import Task class CallbackTask(Task): def __init__(self): super(CallbackTask, self).__init__() def on_success(self, retval, task_id, args, kwargs): try: item_param= json.loads(args[0]) logger.info('[task_id] %s, [task_type] %s, finished successfully.' % (task_id, item_param.get('task_type'))) except Exception, ex: logger.error(traceback.format_exc()) def on_failure(self, exc, task_id, args, kwargs, einfo): try: item_param = json.loads(args[0]) logger.error(('Task {0} raised exception: {1!r} {2!r}'.format( task_id, exc, einfo.traceback))) except Exception, ex: logger.error(traceback.format_exc())
from celery import task from common.callback import CallbackTask logger = logging.getLogger(__name__) @task(base=CallbackTask) def quota_check(item_param): logger.info('start') return
14
result
=
add.delay(
4
,
4
)
>>> result.ready()
False
You can wait for the result to complete, but this is rarely used since it turns the asynchronous call into a synchronous one:
>>> result.get(timeout=1)
8
In case the task raised an exception, get()
will re-raise the exception, but you can override this by specifying the propagate
argument:
>>> result.get(propagate=False)
If the task raised an exception you can also gain access to the original traceback:
>>> result.traceback
15 添加定时任务的一种方法
from celery import Celery
from celery.schedules import crontab
app = Celery()
@app.on_after_configure.connect
def setup_periodic_tasks(sender, **kwargs):
# Calls test('hello') every 10 seconds.
sender.add_periodic_task(10.0, test.s('hello'), name='add every 10')
# Calls test('world') every 30 seconds
sender.add_periodic_task(30.0, test.s('world'), expires=10)
# Executes every Monday morning at 7:30 a.m.
sender.add_periodic_task(
crontab(hour=7, minute=30, day_of_week=1),
test.s('Happy Mondays!'),
)
@app.task
def test(arg):
print(arg)
另一种方法: Example: Run the tasks.add task every 30 seconds. app.conf.beat_schedule = { 'add-every-30-seconds': { 'task': 'tasks.add', 'schedule': 30.0, 'args': (16, 16) }, } app.conf.timezone = 'UTC'
16 查看结果:
from celery.result import AsyncResult from celery_app_task import cel async = AsyncResult(id="e919d97d-2938-4d0f-9265-fd8237dc2aa3", app=cel) if async.successful(): result = async.get() print(result) # result.forget() # 将结果删除 elif async.failed(): print('执行失败') elif async.status == 'PENDING': print('任务等待中被执行') elif async.status == 'RETRY': print('任务异常后正在重试') elif async.status == 'STARTED': print('任务已经开始被执行')
==========================
ret=task1.add.apply_async(args=[2, 8],queue="email",routing_key="email")
print('hello world')
print(ret.status)
print(ret.id)
print(ret.result) # NONE
print(ret.get()) #没有加timeout,所以阻塞住了,直到返回结果10
print(ret.result) # 10
17