zoukankan      html  css  js  c++  java
  • 牛客多校第十场-D- Rikka with Prefix Sum

    链接:https://www.nowcoder.com/acm/contest/148/D
    来源:牛客网

    Prefix Sum is a useful trick in data structure problems.
    For example, given an array A of length n and m queries. Each query gives an interval [l,r] and you need to calculate . How to solve this problem in O(n+m)? We can calculate the prefix sum array B in which Bi is equal to . And for each query, the answer is Br-Bl-1.

    Since Rikka is interested in this powerful trick, she sets a simple task about Prefix Sum for you:

    Given two integers n,m, Rikka constructs an array A of length n which is initialized by Ai = 0. And then she makes m operations on it.

    There are three types of operations:
    1. 1 L R w, for each index i ∈ [L,R], change Ai to A+ w.
    2. 2, change A to its prefix sum array. i.e., let A' be a back-up of A, for each i ∈ [1,n], change Ai to .
    3. 3 L R, query for the interval sum .

    输入描述:

    The first line contains a single number t(1≤ t ≤ 3), the number of the testcases.

    For each testcase, the first line contains two integers n,m(1 ≤ n,m ≤ 10

    5

    ). 

    And then m lines follow, each line describes an operation(1 ≤ L ≤ R≤ n, 0 ≤ w ≤ 10

    9

    ). 

    The input guarantees that for each testcase, there are at most 500 operations of type 3.

    输出描述:

    For each query, output a single line with a single integer, the answer modulo 998244353.

    示例1

    输入

    1
    100000 7
    1 1 3 1
    2
    3 2333 6666
    2
    3 2333 6666
    2
    3 2333 6666
    

    输出

    13002
    58489497
    12043005
    操作有两种,1操作是给l-r区间内的数都加w,2操作是让这个数列变为它的前缀和序列
    我们知道,2操作之后得到的新的序列差分之后就是操作前的序列,所以如果只有2操作的话,就是给你一个差分了很多次之后的序列求原序列
    但是它还有1操作,1操作对于差分的级别没有变化,但我们知道在原来的序列的l-r区间+w,其实就是在它的差分序列l处+w,r+1处-w
    那么现在的问题就在于在这样的一个差分序列的表格中,如果我们在某个点+w,造成的影响是什么

    我们发现在一个点+w之后,影响的是它右下角的所有点,每个行的系数是杨辉三角的一列,所以如果在(i,j)点+w,那么(x,y)点的系数为C(x-ai+y-j-1,x-i-1)
    
    然后3操作不超过500次,所以我们就记录下每次操作,然后对每次询问O(n)计算即可
    #include<bits/stdc++.h>
    #define ll long long
    using namespace std;
    const int p=998244353;
    const int N=2e5+10;
    int n,m,T,op,l,r,w,cnt;
    struct orz{
        int x,pos,w;
    }a[N];
    ll fac[N],inv[N];
    ll poww(ll x,int y)
    {
        x%=p;
        ll ret=1;
        while (y)
        {
            if (y&1) ret=ret*x%p;
            x=x*x%p;
            y>>=1;
        }
        return ret;
    }
    void pre()
    {
        fac[0]=1;
        for (int i=1;i<N;i++) fac[i]=fac[i-1]*i%p;
        inv[N-1]=poww(fac[N-1],p-2);
        for (int i=N-2;i>=0;i--) inv[i]=inv[i+1]*(i+1)%p;
    }
    ll C(int a,int b)
    {
        if (b>a||b<0) return 0;
        return fac[a]*inv[b]%p*inv[a-b]%p;
    }
    ll solve(int x,int y)
    {
        ll ret=0;
        for (int i=1;i<=cnt;i++)
        {
            if (a[i].x<=x&&a[i].pos<=y)
                ret=(ret+C(x-a[i].x+y-a[i].pos-1,x-a[i].x-1)*(ll)a[i].w%p)%p;
        }
        return ret;
    }
    int main()
    {
        scanf("%d",&T);
        pre();
        while (T--)
        {
            scanf("%d%d",&n,&m);
            int now=1;
            cnt=0;
            while (m--)
            {
                scanf("%d",&op);
                if (op==1)
                {
                    scanf("%d%d%d",&l,&r,&w);
                    cnt++; a[cnt].x=now-1; a[cnt].pos=l; a[cnt].w=w%p;
                    cnt++; a[cnt].x=now-1; a[cnt].pos=r+1; a[cnt].w=-w%p;
                }
                else if (op==2) now++;
                else
                {
                    scanf("%d%d",&l,&r);
                    ll ans=((solve(now+1,r)-solve(now+1,l-1))%p+p)%p;
                    printf("%lld
    ",ans);
                }
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    Java抓取网页数据(原网页+Javascript返回数据)
    FindWindow使用方法
    hadoop学习;block数据块;mapreduce实现样例;UnsupportedClassVersionError异常;关联项目源代码
    Chart控件的多种使用方法
    windows消息钩子
    编程算法基础-一刀切法
    MYSQL BLOB 字段大小以及个数的限制測试。
    linux和windows文件名称长度限制
    WINHTTP的API接口说明。
    hdu4414(DFS 找十字架数量)
  • 原文地址:https://www.cnblogs.com/tetew/p/9504595.html
Copyright © 2011-2022 走看看