zoukankan      html  css  js  c++  java
  • NCPC2016-E- Exponial

    题目描述

    Illustration of exponial(3) (not to scale), Picture by C.M. de Talleyrand-Périgord via Wikimedia Commons Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are many ways of constructing really big numbers known to humankind, for instance:
    In this problem we look at their lesser-known love-child the exponial , which is an operation defined for all positive integers n as
    For example, exponial(1) = 1 and  which is already pretty big. Note that exponentiation is right-associative:  .
    Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computes exponial(n) mod m (the remainder of exponial(n) when dividing by m).

    输入

    The input consists of two integers n (1 ≤ n ≤ 109 ) and m (1 ≤ m ≤ 109 ).

    输出

    Output a single integer, the value of exponial(n) mod m.

    样例输入

    2 42

    样例输出

    2
    a^b %c= a^(b%phi(c)+phi(c)) %c (b>=phi(c)) 
    如果 phi(c)>b 直接 a^b%c

    对这个题来说,当n>4可以直接用这个算了
    #include <bits/stdc++.h>
    #define ll long long
    using namespace std;
    ll fi(ll n)
    {
        ll ans=n;
        for (int i=2;i*i<=n;i++)
        {
            if (n%i==0)
            {
                ans-=ans/i;
                while (n%i==0) n/=i;
            }
        }
        if (n>1) ans-=ans/n;
        return ans;
    }
     
    ll qpow(ll a, ll n, ll m) {
        a%=m;
        ll ret = 1;
        while(n)
        {
            if (n&1) ret=ret*a%m;
            a=a*a%m;
            n>>=1;
        }
        return ret;
    }
    ll f(ll n, ll m)
    {
        if (m==1) return 0;
        if (n==1) return 1;
        if (n==2) return 2%m;
        if (n==3) return 9%m;
        if (n==4) return 262144%m;
        return qpow(n, f(n-1, fi(m)) % fi(m) + fi(m), m);
    }
    int main()
    {
        ll n, m;
        while(cin >> n >> m)
        {
            cout << f(n, m) << endl;
        }
        return 0;
    }
    View Code
     
  • 相关阅读:
    ansible入门七(实战)
    ansible入门六(roles)
    ansible入门五
    ansible入门四(Ansible playbook基础组件介绍)
    ansible入门三(Ansible的基础元素和YAML介绍)
    ansible入门二(Ansible常见模块介绍)
    关于XMLHttpRequest对象的responseText属性
    使用WebStorm/Phpstorm实现remote host远程开发
    pageX、clientX、screenX、offsetX、layerX、x
    jQuery.innerWidth() 函数详解
  • 原文地址:https://www.cnblogs.com/tetew/p/9748274.html
Copyright © 2011-2022 走看看