zoukankan      html  css  js  c++  java
  • NCPC2016-E- Exponial

    题目描述

    Illustration of exponial(3) (not to scale), Picture by C.M. de Talleyrand-Périgord via Wikimedia Commons Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are many ways of constructing really big numbers known to humankind, for instance:
    In this problem we look at their lesser-known love-child the exponial , which is an operation defined for all positive integers n as
    For example, exponial(1) = 1 and  which is already pretty big. Note that exponentiation is right-associative:  .
    Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computes exponial(n) mod m (the remainder of exponial(n) when dividing by m).

    输入

    The input consists of two integers n (1 ≤ n ≤ 109 ) and m (1 ≤ m ≤ 109 ).

    输出

    Output a single integer, the value of exponial(n) mod m.

    样例输入

    2 42

    样例输出

    2
    a^b %c= a^(b%phi(c)+phi(c)) %c (b>=phi(c)) 
    如果 phi(c)>b 直接 a^b%c

    对这个题来说,当n>4可以直接用这个算了
    #include <bits/stdc++.h>
    #define ll long long
    using namespace std;
    ll fi(ll n)
    {
        ll ans=n;
        for (int i=2;i*i<=n;i++)
        {
            if (n%i==0)
            {
                ans-=ans/i;
                while (n%i==0) n/=i;
            }
        }
        if (n>1) ans-=ans/n;
        return ans;
    }
     
    ll qpow(ll a, ll n, ll m) {
        a%=m;
        ll ret = 1;
        while(n)
        {
            if (n&1) ret=ret*a%m;
            a=a*a%m;
            n>>=1;
        }
        return ret;
    }
    ll f(ll n, ll m)
    {
        if (m==1) return 0;
        if (n==1) return 1;
        if (n==2) return 2%m;
        if (n==3) return 9%m;
        if (n==4) return 262144%m;
        return qpow(n, f(n-1, fi(m)) % fi(m) + fi(m), m);
    }
    int main()
    {
        ll n, m;
        while(cin >> n >> m)
        {
            cout << f(n, m) << endl;
        }
        return 0;
    }
    View Code
     
  • 相关阅读:
    C#语句2——循环语句(for循环与for循环嵌套)
    C#语言基础
    C#几种截取字符串的方法小结
    SQL提取数据库表名,字段名等信息
    Winform绑定图片的三种方式
    C#中遍历各类数据集合的方法总结
    c#winform图片绘制与图片验证码
    DataGridView根据条件给单元格绑定图片
    C#Winform 父窗体 子窗体 传值
    一条Sql语句分组排序并且限制显示的数据条数
  • 原文地址:https://www.cnblogs.com/tetew/p/9748274.html
Copyright © 2011-2022 走看看