zoukankan      html  css  js  c++  java
  • TF(3): 安装部署_Windows

     CUDA:


    • CUDA(Compute Unified Device Architecture): CUDA™是一种由显卡厂商NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 此外,它还提供了硬件的直接访问接口,而不必像传统方式那样必须依赖图形的API接口来实现GPU的访问。

    cuDNN


    • cuDNN的全称为NVIDIA CUDA® Deep Neural Network library,是NVIDIA专门针对深度神经网络(Deep Neural Networks)中的基础操作而设计基于GPU的加速库。cuDNN为深度神经网络中的标准流程提供了高度优化的实现方式,例如convolution、pooling、normalization以及activation layers的前向以及后向过程
    • cuDNN只是NVIDIA深度神经网络软件开发包中的其中一种加速库。( https://developer.nvidia.com/deep-learning-software )
    • 基本上所有的深度学习框架都支持cuDNN这一加速工具,例如:Caffe、Caffe2、TensorFlow、Torch、Pytorch、Theano等。 

    Anaconda


    • Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。  因为包含了大量的科学包,Anaconda 的下载文件比较大(约 531 MB),如果只需要某些包,或者需要节省带宽或存储空间,也可以使用Miniconda这个较小的发行版(仅包含conda和 Python)
    • NumPy: NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。NumPy 是开源的。
    • Scipy:是一个高级的科学计算库,它和Numpy联系很密切,Scipy一般都是操控Numpy数组来进行科学计算,所以可以说是基于Numpy之上了
    • Six : 它是一个专门用来兼容 Python 2 和 Python 3 的库。它解决了诸如 urllib 的部分方法不兼容, str 和 bytes 类型不兼容等“知名”问题。
    • Matplotlib:是Python中最常用的可视化工具之一,可以非常方便地创建海量类型地2D图表和一些基本的3D图表。Matplotlib最早是为了可视化癫痫病人的脑皮层电图相关的信号而研发,因为在函数的设计上参考了MATLAB,所以叫做Matplotlib。

    安装环境


     如果要安装GPU版本(有N卡,即NVIDIA显卡),需要以下额外环境:

    1. 有支持CUDA计算能力3.0或更高版本的NVIDIAGPU卡。
    2. 下载安装CUDA Toolkit 8.0,并确保其路径添加到PATH环境变量里;
    3. 下载安装cuDNN v6或v6.1,并确保其路径添加到PATH环境变量里;
    4. CUDA8.0相关的NVIDIA驱动。

    本人机器环境: Win10 X64 专业版; NVIDIA GeForce 940MX

    • CUDA Toolkit安装成功后会自动和系统的编译器进行绑定。如下图:
    • 通过在命令窗中执行 nvcc -V 初步判断是否安装成功:
    • 安装成功后(默认安装)系统会增加如下环境变量:
    • 对于cuDnn库,解压下载的安装包,将这三个文件夹下的文件拷到CUDA对应的文件夹下面即可。

    安装Anaconda


     tensorflow是基于python脚本语言的,是一种高级应用,它必须依赖于底层的应用发挥作用。因此需要安装python,当然还需要安装numpy、scipy、six、matplotlib等几十个扩展包。如果一个个安装,十分耗费时间,不过现在有了集成环境anaconda,安装就方便了。python的大部分扩展包,都集成在anaconda里面了,因此只需要装这一个东西就行了。

    • 先到官网下载(https://www.anaconda.com/download/
    • 安装完成后,查看版本: conda –version
    • 检测目前安装了哪些环境:conda info --envs
    • 检查目前有哪些版本的python可以安装:conda search --full -name python
    • 安装不同版本的python:conda create --name tensorflow python=3.5.2
    • 按照提示,激活:conda activate tensorflow
    • 前面的括号代表当前环境为tensorflow,看到这里,你已经将准备工作做好了。
    • 你可以退出当前环境:deactivate tensorflow
    • 确保名叫tensorflow的环境已经被成功添加:conda info --envs
    • 检查新环境中的python版本:python --version

    安装TensorFlow


    1. 按照官网的指示:另一种尝试:pip install tensorflow
      • 安装CPU版本输入: pip install --ignore-installed --upgrade tensorflow
      • 安装GPU版本输入: pip install --ignore-installed --upgrade tensorflow-gpu
    2. 安装成功后如下图:试运行验证环境示意代码:

    安装TensorFlow环境下的Spyder插件


    1. 进入Anaconda Navigator(开始菜单->Anaconda 3->Anaconda Navigator),注意,现在的Application栏是root,也就是Anaconda的根,此时的环境是Python3.6.
    2. 切换到TensorFlow下面,然后再安装Spyder,你还可以选择安装qtconsole,notebook,或者orange。
    3. 安装Spyder后打开,写下我们第一个Hello (Spyder是Python(x,y)的作者为它开发的一个简单的集成开发环境。和其他的Python开发环境相比,它最大的优点就是模仿MATLAB的“工作空间”的功能,可以很方便地观察和修改数组的值。)查看执行结果
      • import tensorflow as tf
        
        hello = tf.constant('Hello,TensorFlow!')
        sess = tf.session()
        print(sess.run(hello))

    配置PyCharm


    Tensorboard的启用 


     tensorboard是TensorFlow的一个可视化工具,能够监控TensorFlow运行过程中的计算图,各种指标随着时间的变化趋势以及训练中使用到的图像等信息使用tensorboard包括两个步骤:

    1. 在python程序中将想要可视化的结果,包括中间结果,例如准确率变化等,以及计算图模型使用tf.Summary.FileWriter()写入到文件系统。
    2. 运行tensorboard –path-to-log命令读取之前输出的log,并显示在web服务器上,这时可通过浏览器访问。

    示意代码如下:

    1. 输出日志文件
    2. 生成文件如下:
    3. 找到tensorboard.exe所在文件夹,复制路径,然后在CMD下进入此路径。命令: . ensorboard.exe --logdir=c:MLSrclog_1
    4. 在浏览器中输入以下网址就可以启动tensorboard了

    参考资料:


  • 相关阅读:
    HDU1272---(并查集)简单应用
    HDU1232 畅通工程---(经典并查集应用)
    HDU 1877 又一版 A+B(进制转换)
    L1-020. 帅到没朋友
    L2-001. 紧急救援---(Dijkstra,记录路径)
    JVM Class字节码之三-使用BCEL改变类属性
    JVM Class详解之一
    Jvm原理剖析与调优之内存结构
    虚拟化的发展历程和实现原理——图文详解
    JVM学习笔记(四)------内存调优
  • 原文地址:https://www.cnblogs.com/tgzhu/p/9288200.html
Copyright © 2011-2022 走看看