1.二叉树的高度
2.二叉树的宽度
3.比较两个二叉树是否相等
数据结构的定义
先定义一个简单的二叉树,由于只是演示,所以定义得比较简单.
<span style="font-size:14px;"> #include <stdio.h> #define MAX(x,y) ((x)>(y)?(x):(y)) //define a binary search tree typedef struct BNode { int val; struct BNode *left, *right; }BNode,*BTree;</span>
二叉树节点的值为val,另外为了比较方便还定义了一个宏MAX. // insert a node to binary tree // we assume that no duplicated elements void BTreeInsert(BTree *bt, int val) { BNode *p = *bt,*cur = *bt;//p is a parent node of cur while (cur != NULL) {//find the position to insert node val p = cur;</span>
if ( val < cur->val )</span>
cur = cur->left; else cur = cur->right; } BNode *n = malloc(sizeof(BNode)); n->val = val; n->left = n->right = NULL; if (p == NULL) *bt = n;// the tree is empty else { if (val < p->val) p->left = n; else p->right = n; } }//BTreeInsert 还定义了一个函数BTreeInsert用来帮助创建二叉树.</span>
二叉树的高度
基本方法:二叉树,分别求出左右子数的高度,然后取左右子树高度的最大数值,再加上1,就是二叉树的高度.
由于该问题又被划分为两个性质一样的子问题,因此很容易导致递归.
39 //get the depth of a BST
40 int BTreeDepth(BTree bt)
41 {
42 if (bt != NULL)
43 {
44 int dep_left = BTreeDepth(bt->left);
45 int dep_right = BTreeDepth(bt->right);
46 return MAX(dep_left,dep_right)+1;
47 }
48 return 0;
49 }//BTreeDepth
二叉树的宽度
基本方法:左右子树的宽度相加,于是就得到二叉树的宽度.
66 //get the width of a BST
67 int BTreeWidth(BTree bt)
68 {
69 if (bt != NULL)
70 {
71 if ((bt->left == bt->right) && (bt->left == NULL))
72 return 1;// bt is a leaf
73 else
74 return BTreeWidth(bt->left) + BTreeWidth(bt->right);
75 }
76 else
77 return 0;
78 }//BTreeWidth
79