zoukankan      html  css  js  c++  java
  • Faster-RCNN tensorflow源码阅读笔记

     源码地址:https://github.com/endernewton/tf-faster-rcnn

    看到一个博客写了对源码的解析,写的很简洁全面,估计再写也不可能比他写的好了,不过还是简单写下源码的解析及阅读后的感受吧。https://blog.csdn.net/u012457308/article/details/79566195

    代码主要部分为输入处理,网络搭建及loss处理。最难的地方是各种reshape,如果不注意很容易就乱了,这个一定要理清

    上一篇笔记简单介绍了Faster-RCNN,这篇主要介绍下其tensorflow源码阅读笔记。下载后工程如下,主要程序都存储在lib这个文件夹里面。接下来诸葛介绍该文件夹的内容。

     

    1.数据读取

    Datasets文件夹里主要是数据读取程序。这部分不做介绍,下一篇文章会介绍系列代码如何制作数据集等工作。

    2.Nets文件夹包含特征提取网络(mobilenet,resnet_v1,vgg_16),即RPN网络之前部分。第二部分为RPN网络。此部分作用是对特征提取网络进一步处理,产生porposes.第三部分为分类与预测框回归网络。RPN网络结构在network.py中。网络结构如下:

    网络搭建部分主程序:

     1   def _build_network(self, is_training=True):
     2     # select initializers进行初始化
     3     if cfg.TRAIN.TRUNCATED:
     4       initializer = tf.truncated_normal_initializer(mean=0.0, stddev=0.01)
     5       initializer_bbox = tf.truncated_normal_initializer(mean=0.0, stddev=0.001)
     6     else:
     7       initializer = tf.random_normal_initializer(mean=0.0, stddev=0.01)
     8       initializer_bbox = tf.random_normal_initializer(mean=0.0, stddev=0.001)
     9 
    10     net_conv = self._image_to_head(is_training)##经过特征提取网络,初步提取特征
    11     with tf.variable_scope(self._scope, self._scope):
    12       # build the anchors for the image
    13       self._anchor_component()###产生anchor
    14       # region proposal network ###产生proposal的坐标
    15       rois = self._region_proposal(net_conv, is_training, initializer)
    16       # region of interest pooling
    17       if cfg.POOLING_MODE == 'crop':
    18         pool5 = self._crop_pool_layer(net_conv, rois, "pool5") ###对产生的porposal进行ROI池化,统一格式
    19       else:
    20         raise NotImplementedError
    21 
    22     fc7 = self._head_to_tail(pool5, is_training)
    23     with tf.variable_scope(self._scope, self._scope):
    24       # region classification 输入到Fast-RCNN网络中,对样本进行分类和预测框回归
    25       cls_prob, bbox_pred = self._region_classification(fc7, is_training, 
    26                                                         initializer, initializer_bbox)
    27 
    28     self._score_summaries.update(self._predictions)
    29 
    30     return rois, cls_prob, bbox_pred

     逐步进行代码分析。

    1. 特征提取网络,有三个备选项,论文好像选的是VGG-16,这部分就是输入网络,获得某卷积层的输出,没有特别的地方。

    2.RPN网络,此部分是重点,也是Faster-RCNN与前面几种方法最大的不同

    anchor产生方式:每个特征点周围产生9个anchor,分别为3种面积,3种比例。程序为generate_anchors.py。程序很好理解,就是(0,0,15,15)为基准点,有三种比例(0.5,1,2)求得基准anchor的坐标后,分别乘(8,16,32)倍的scal,就得到9种anchor的坐标,之后再平移,就得到所有特征点周围anchor的坐标。

    产生proposal。

    接下来是RPN网络部分主函数,产生目标的porposal:

     1   def _region_proposal(self, net_conv, is_training, initializer):
     2     rpn = slim.conv2d(net_conv, cfg.RPN_CHANNELS, [3, 3], trainable=is_training, weights_initializer=initializer,
     3                         scope="rpn_conv/3x3") ##经过一个3X3卷积,之后分两条线
     4     self._act_summaries.append(rpn)
     5     rpn_cls_score = slim.conv2d(rpn, self._num_anchors * 2, [1, 1], trainable=is_training,
     6                                 weights_initializer=initializer,
     7                                 padding='VALID', activation_fn=None, scope='rpn_cls_score') ###第一条线产生预测类别确定是背景还是类别
     8     # change it so that the score has 2 as its channel size
     9     rpn_cls_score_reshape = self._reshape_layer(rpn_cls_score, 2, 'rpn_cls_score_reshape')
    10     rpn_cls_prob_reshape = self._softmax_layer(rpn_cls_score_reshape, "rpn_cls_prob_reshape")
    11     rpn_cls_pred = tf.argmax(tf.reshape(rpn_cls_score_reshape, [-1, 2]), axis=1, name="rpn_cls_pred")
    12     rpn_cls_prob = self._reshape_layer(rpn_cls_prob_reshape, self._num_anchors * 2, "rpn_cls_prob")
    13     rpn_bbox_pred = slim.conv2d(rpn, self._num_anchors * 4, [1, 1], trainable=is_training,  ###第二条线产生预测框坐标,对预测框坐标进行预测
    14                                 weights_initializer=initializer,
    15                                 padding='VALID', activation_fn=None, scope='rpn_bbox_pred')
    16     if is_training:
    17       rois, roi_scores = self._proposal_layer(rpn_cls_prob, rpn_bbox_pred, "rois") ###根据预测的类别和预测框坐标对porposa进行筛选,对前N个进行NMS
    18       rpn_labels = self._anchor_target_layer(rpn_cls_score, "anchor") 
    19       # Try to have a deterministic order for the computing graph, for reproducibility
    20       with tf.control_dependencies([rpn_labels]):
    21         rois, _ = self._proposal_target_layer(rois, roi_scores, "rpn_rois")
    22     else:
    23       if cfg.TEST.MODE == 'nms':
    24         rois, _ = self._proposal_layer(rpn_cls_prob, rpn_bbox_pred, "rois")
    25       elif cfg.TEST.MODE == 'top':
    26         rois, _ = self._proposal_top_layer(rpn_cls_prob, rpn_bbox_pred, "rois")
    27       else:
    28         raise NotImplementedError
    29 
    30     self._predictions["rpn_cls_score"] = rpn_cls_score
    31     self._predictions["rpn_cls_score_reshape"] = rpn_cls_score_reshape
    32     self._predictions["rpn_cls_prob"] = rpn_cls_prob
    33     self._predictions["rpn_cls_pred"] = rpn_cls_pred
    34     self._predictions["rpn_bbox_pred"] = rpn_bbox_pred
    35     self._predictions["rois"] = rois
    36 
    37     return rois

    产生目标porposals的坐标后,因为size大小不一样,需要进行ROI池化,使输出为统一维度。程序如下:

     1   def _crop_pool_layer(self, bottom, rois, name): ####bottom为convert层卷积输出, feat_stride为补偿乘积,用来求得原图的w,h.rois为选出的256个anchor的坐标
     2     with tf.variable_scope(name) as scope:
     3       batch_ids = tf.squeeze(tf.slice(rois, [0, 0], [-1, 1], name="batch_id"), [1])
     4       # Get the normalized coordinates of bounding boxes
     5       bottom_shape = tf.shape(bottom)
     6       height = (tf.to_float(bottom_shape[1]) - 1.) * np.float32(self._feat_stride[0])
     7       width = (tf.to_float(bottom_shape[2]) - 1.) * np.float32(self._feat_stride[0])
     8       x1 = tf.slice(rois, [0, 1], [-1, 1], name="x1") / width
     9       y1 = tf.slice(rois, [0, 2], [-1, 1], name="y1") / height
    10       x2 = tf.slice(rois, [0, 3], [-1, 1], name="x2") / width
    11       y2 = tf.slice(rois, [0, 4], [-1, 1], name="y2") / height###得到相对位置
    12       # Won't be back-propagated to rois anyway, but to save time
    13       bboxes = tf.stop_gradient(tf.concat([y1, x1, y2, x2], axis=1))
    14       pre_pool_size = cfg.POOLING_SIZE * 2
    15       crops = tf.image.crop_and_resize(bottom, bboxes, tf.to_int32(batch_ids), [pre_pool_size, pre_pool_size], name="crops")##利用tensorflow的自带函数作用类似于ROI池化
    16 
    17     return slim.max_pool2d(crops, [2, 2], padding='SAME')

    之后就是Fast-RCNN部分的网络结构了,即根据产生的porposal,进行分类及预测。网络部分代码:

     1   def _region_classification(self, fc7, is_training, initializer, initializer_bbox):
     2     cls_score = slim.fully_connected(fc7, self._num_classes, 
     3                                        weights_initializer=initializer,
     4                                        trainable=is_training,
     5                                        activation_fn=None, scope='cls_score')
     6     cls_prob = self._softmax_layer(cls_score, "cls_prob")
     7     cls_pred = tf.argmax(cls_score, axis=1, name="cls_pred")
     8     bbox_pred = slim.fully_connected(fc7, self._num_classes * 4, 
     9                                      weights_initializer=initializer_bbox,
    10                                      trainable=is_training,
    11                                      activation_fn=None, scope='bbox_pred')
    12 
    13     self._predictions["cls_score"] = cls_score
    14     self._predictions["cls_pred"] = cls_pred
    15     self._predictions["cls_prob"] = cls_prob
    16     self._predictions["bbox_pred"] = bbox_pred
    17 
    18     return cls_prob, bbox_pred

    最后说一下loss函数:分为RPN部分loss和RCNN部分loss。整体网络训练是联合训练的。

     1   def _add_losses(self, sigma_rpn=3.0):
     2     with tf.variable_scope('LOSS_' + self._tag) as scope:
     3       # RPN, class loss
     4       rpn_cls_score = tf.reshape(self._predictions['rpn_cls_score_reshape'], [-1, 2])
     5       rpn_label = tf.reshape(self._anchor_targets['rpn_labels'], [-1])
     6       rpn_select = tf.where(tf.not_equal(rpn_label, -1))
     7       rpn_cls_score = tf.reshape(tf.gather(rpn_cls_score, rpn_select), [-1, 2])
     8       rpn_label = tf.reshape(tf.gather(rpn_label, rpn_select), [-1])
     9       rpn_cross_entropy = tf.reduce_mean(
    10         tf.nn.sparse_softmax_cross_entropy_with_logits(logits=rpn_cls_score, labels=rpn_label))
    11 
    12       # RPN, bbox loss
    13       rpn_bbox_pred = self._predictions['rpn_bbox_pred']
    14       rpn_bbox_targets = self._anchor_targets['rpn_bbox_targets']
    15       rpn_bbox_inside_weights = self._anchor_targets['rpn_bbox_inside_weights']
    16       rpn_bbox_outside_weights = self._anchor_targets['rpn_bbox_outside_weights']
    17       rpn_loss_box = self._smooth_l1_loss(rpn_bbox_pred, rpn_bbox_targets, rpn_bbox_inside_weights,
    18                                           rpn_bbox_outside_weights, sigma=sigma_rpn, dim=[1, 2, 3])
    19 
    20       # RCNN, class loss
    21       cls_score = self._predictions["cls_score"]
    22       label = tf.reshape(self._proposal_targets["labels"], [-1])
    23       cross_entropy = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=cls_score, labels=label))
    24 
    25       # RCNN, bbox loss
    26       bbox_pred = self._predictions['bbox_pred']
    27       bbox_targets = self._proposal_targets['bbox_targets']
    28       bbox_inside_weights = self._proposal_targets['bbox_inside_weights']
    29       bbox_outside_weights = self._proposal_targets['bbox_outside_weights']
    30       loss_box = self._smooth_l1_loss(bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights)
    31 
    32       self._losses['cross_entropy'] = cross_entropy
    33       self._losses['loss_box'] = loss_box
    34       self._losses['rpn_cross_entropy'] = rpn_cross_entropy
    35       self._losses['rpn_loss_box'] = rpn_loss_box
    36 
    37       loss = cross_entropy + loss_box + rpn_cross_entropy + rpn_loss_box
    38       regularization_loss = tf.add_n(tf.losses.get_regularization_losses(), 'regu')
    39       self._losses['total_loss'] = loss + regularization_loss
    40 
    41       self._event_summaries.update(self._losses)
    42 
    43     return loss
  • 相关阅读:
    [独库骑行之行路难]行路难!
    [独库骑行之我们穿过草原]巴音布鲁克大草原
    [独库骑行之我们路过湖泊]天山的高山湖泊
    [Tips]通过retintolibc方法编写通用exp的一个小技巧
    [独库骑行之奇山异石]丹霞地貌和雅丹地貌
    [独库骑行之我们穿过草原]美丽的乔尔玛草原
    [独库骑行之我们路过沙漠]塔克拉玛干的边缘
    [独库骑行之我们路过森林]那拉提的山林
    大家新年快乐!
    记忆力衰退
  • 原文地址:https://www.cnblogs.com/the-home-of-123/p/9747963.html
Copyright © 2011-2022 走看看