zoukankan      html  css  js  c++  java
  • 3.6.1calcHist的使用+lena.jpg图像RGB3通道的normalize的直方图

      1 ////////////////////////////////////////////////////////////////////////////////////////////
      2 ////Code Source
      3 ////https://blog.csdn.net/ljbkiss/article/details/7412787
      4 ////https://blog.csdn.net/ljbkiss/article/details/7420429
      5 ////calcHist的使用+lena.jpg图像RGB3通道的normalize的直方图
      6 ////////////////////////////////////////////////////////////////////////////////////////////
      7 #include <opencv2/core/core.hpp>
      8 #include <opencv2/highgui/highgui.hpp>
      9 #include <opencv2/imgproc/imgproc.hpp>
     10 #include <iostream>
     11 
     12 //#pragma comment(lib, "opencv_core231d.lib")
     13 //#pragma comment(lib, "opencv_highgui231d.lib")
     14 //#pragma comment(lib, "opencv_imgproc231d.lib")
     15 
     16 using namespace cv;
     17 using namespace std;
     18 
     19 #define HIST_DIM1
     20 
     21 int main(int argc, char** argv)
     22 {
     23 #ifdef HIST_DIM1
     24     //----------------------example 1-------------------------------//
     25     Mat src, dst;
     26     /// Load image
     27     src = imread("d:/lena.jpg");
     28 
     29     if (!src.data)
     30     {
     31         cout << "load image failed" << endl;
     32         return -1;
     33     }
     34 
     35     /// Separate the image in 3 places ( R, G and B )
     36     vector<Mat> rgb_planes;
     37 #define SHOW_HSV
     38 
     39 #ifdef SHOW_HSV
     40     Mat hsv;
     41     cvtColor(src, hsv, COLOR_BGR2HSV);
     42     split(hsv, rgb_planes);
     43 #else
     44     split(src, rgb_planes);
     45 #endif
     46     /// Establish the number of bins 
     47     int histSize = 256;
     48 
     49     /// Set the ranges ( for R,G,B) )
     50     float range[] = { 0, 255 };
     51     const float* histRange = { range };
     52 
     53     bool uniform = true; 
     54     
     55     bool accumulate = false;
     56 
     57     Mat r_hist, g_hist, b_hist;
     58 
     59     /// Compute the histograms:
     60     calcHist(&rgb_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate);
     61     calcHist(&rgb_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate);
     62     calcHist(&rgb_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate);
     63 
     64     // Draw the histograms for R, G and B
     65     int hist_w = 600; 
     66     int hist_h = 400;
     67     int bin_w = cvRound((double)hist_w / histSize);
     68 
     69     Mat rgb_hist[3];
     70     for (int i = 0; i<3; ++i)
     71     {
     72         rgb_hist[i] = Mat(hist_h, hist_w, CV_8UC3, Scalar::all(0));
     73     }
     74 
     75     Mat histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0));
     76 
     77     /// Normalize the result to [ 0, histImage.rows-10]
     78     normalize(r_hist, r_hist, 0, histImage.rows - 10, NORM_MINMAX);
     79     normalize(g_hist, g_hist, 0, histImage.rows - 10, NORM_MINMAX);
     80     normalize(b_hist, b_hist, 0, histImage.rows - 10, NORM_MINMAX);
     81 
     82     /// Draw for each channel in one image
     83     for (int i = 1; i < histSize; i++)
     84     {
     85         line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(r_hist.at<float>(i - 1))),
     86             Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))),
     87             Scalar(0, 0, 255), 1);
     88         line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(g_hist.at<float>(i - 1))),
     89             Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))),
     90             Scalar(0, 255, 0), 1);
     91         line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(b_hist.at<float>(i - 1))),
     92             Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))),
     93             Scalar(255, 0, 0), 1);
     94     }
     95 
     96     for (int j = 0; j<histSize; ++j)
     97     {
     98         int val = saturate_cast<int>(r_hist.at<float>(j));
     99         rectangle(rgb_hist[0], Point(j * 2 + 10, rgb_hist[0].rows), Point((j + 1) * 2 + 10, rgb_hist[0].rows - val), Scalar(0, 0, 255), 1, 8);
    100 
    101         val = saturate_cast<int>(g_hist.at<float>(j));
    102         rectangle(rgb_hist[1], Point(j * 2 + 10, rgb_hist[1].rows), Point((j + 1) * 2 + 10, rgb_hist[1].rows - val), Scalar(0, 255, 0), 1, 8);
    103 
    104         val = saturate_cast<int>(b_hist.at<float>(j));
    105         rectangle(rgb_hist[2], Point(j * 2 + 10, rgb_hist[2].rows), Point((j + 1) * 2 + 10, rgb_hist[2].rows - val), Scalar(255, 0, 0), 1, 8);
    106     }
    107 
    108     /// Display 
    109     namedWindow("calcHist Demo", CV_WINDOW_AUTOSIZE);
    110     namedWindow("wnd");
    111     imshow("calcHist Demo", histImage);
    112     imshow("wnd", src);
    113 
    114     imshow("R", rgb_hist[0]);
    115     imshow("G", rgb_hist[1]);
    116     imshow("B", rgb_hist[2]);
    117 #else
    118     //----------------------example 2-------------------------------//
    119     Mat src, hsv;
    120     if (!(src = imread("d:/picture/lena.bmp")).data)
    121         return -1;
    122     cvtColor(src, hsv, CV_BGR2HSV);
    123     // Quantize the hue to 30 levels
    124     // and the saturation to 32 levels
    125     int hbins = 60, sbins = 64;
    126     int histSize[] = { hbins, sbins };
    127     // hue varies from 0 to 179, see cvtColor
    128     float hranges[] = { 0, 180 };
    129     // saturation varies from 0 (black-gray-white) to
    130     // 255 (pure spectrum color)
    131     float sranges[] = { 0, 256 };
    132     const float*ranges[] = { hranges, sranges };
    133     MatND hist;
    134     // we compute the histogram from the 0-th and 1-st channels
    135     int channels[] = { 0, 1 };
    136     calcHist(&hsv, 1, channels, Mat(), hist, 2, histSize, ranges, true, false);
    137     double maxVal = 0;
    138     minMaxLoc(hist, 0, &maxVal, 0, 0);
    139     int scale = 8;
    140     Mat histImg = Mat::zeros(sbins*scale, hbins*scale, CV_8UC3);
    141     for (int h = 0; h < hbins; h++)
    142     {
    143         for (int s = 0; s < sbins; s++)
    144         {
    145             float binVal = hist.at<float>(h, s);
    146             int intensity = cvRound(binVal * 255 / maxVal);
    147             rectangle(histImg, Point(h*scale, s*scale), Point((h + 1)*scale - 1, (s + 1)*scale - 1), Scalar::all(intensity), CV_FILLED);
    148         }
    149     }
    150     namedWindow("Source", 1);
    151     imshow("Source", src);
    152     namedWindow("H-S Histogram", 1);
    153     imshow("H-S Histogram", histImg);
    154 #endif    
    155     //-------------------------------------------------------------------------//    
    156     waitKey(0);
    157     destroyAllWindows();
    158     return 0;
    159 }
    View Code

     运行效果:

  • 相关阅读:
    第一个MIPS汇编
    选你所爱,爱你所选
    海明码(汉明码)的工作机制
    第一个x86汇编程序
    机器学习 coursera【week1-3】
    描述符应用与类的装饰器
    多态,封装,反射,类内置attr属性,os操作复习
    面向对象操作
    类属性的增删改查,类属性和实例属性
    os常用模块,json,pickle,shelve模块,正则表达式(实现运算符分离),logging模块,配置模块,路径叠加,哈希算法
  • 原文地址:https://www.cnblogs.com/thebreakofdawn/p/9430291.html
Copyright © 2011-2022 走看看