zoukankan      html  css  js  c++  java
  • 一个简单的计时器对比各种可迭代对象定义方式的速度区别

    一个简单的计时器对比各种可迭代对象定义方式的速度区别

    前情介绍: 如果对迭代器和生成器不了解,可以先看这两篇

    初始版本

    import time

    reps = 1000
    repslist = range(reps)


    def timer(func, *pargs, **kargs):
    start = time.clock()
    for i in repslist:
    ret = func(*pargs, **kargs)
    elapsed = time.clock() - start
    return (elapsed, ret)

    这个是初始版本的计时器.

    我们先来做个测试跑一遍

    from timer import timer
    import sys

    reps = 100000
    repslist = range(reps)

    def forloop():
    res = []
    for x in repslist:
    res.append(abs(x))
    return res

    def listComp():
    return [abs(x) for x in repslist]

    def mapCall():
    return list(map(abs,repslist))

    def genExpr():
    return list(abs(x) for x in repslist)

    def genFunc():
    def gen():
    for x in repslist:
    yield abs(x)
    return list(gen())

    print(sys.version)

    for test in(forloop,listComp,mapCall,genExpr,genFunc):
    elapsed,result = timer(test)
    print('-'*33)
    print('%-9s:%.5f => [%s...%s]'%(test.__name__,elapsed,result[0],result[-1]))

    得到的结果如下:

    C:Anaconda3python.exe C:/Users/Brady/PycharmProjects/FAQ/literor.py
    3.7.4 (default, Aug 9 2019, 18:34:13) [MSC v.1915 64 bit (AMD64)]
    ---------------------------------
    forloop :11.40492 => [0...99999]
    ---------------------------------
    listComp :7.58494 => [0...99999]
    ---------------------------------
    mapCall :4.28971 => [0...99999]
    ---------------------------------
    genExpr :10.49181 => [0...99999]
    ---------------------------------
    genFunc :10.76498 => [0...99999]

    从结果中可以看出来:

    • map比列表解析式快,而且两者都比for循环要快得多.
    • 生成器表达式和函数速度居中

    如果我们采用自定义函数而非内置函数的话,得到的结果就更有意思了:

    from timer import timer
    import sys

    reps = 100000
    repslist = range(reps)

    def forloop():
    res = []
    for x in repslist:
    res.append(x+10)
    return res

    def listComp():
    return [x+10 for x in repslist]

    def mapCall():
    return list(map(lambda x:x+10,repslist))

    def genExpr():
    return list(x+10 for x in repslist)

    def genFunc():
    def gen():
    for x in repslist:
    yield x+10
    return list(gen())

    print(sys.version)

    for test in(forloop,listComp,mapCall,genExpr,genFunc):
    elapsed,result = timer(test)
    print('-'*33)
    print('%-9s:%.5f => [%s...%s]'%(test.__name__,elapsed,result[0],result[-1]))

    我们得到的结果如下:

    3.7.4 (default, Aug  9 2019, 18:34:13) [MSC v.1915 64 bit (AMD64)]
    ---------------------------------
    forloop :26.69562 => [10...100009]
    ---------------------------------
    listComp :16.46341 => [10...100009]
    ---------------------------------
    mapCall :19.51527 => [10...100009]
    ---------------------------------
    genExpr :10.53358 => [10...100009]
    ---------------------------------
    genFunc :10.85899 => [10...100009]

    Process finished with exit code 0

    说实话这个结果有点不好解释了...貌似打脸了...

    于是我又跑了一遍...得到的结果如下:

    3.7.4 (default, Aug  9 2019, 18:34:13) [MSC v.1915 64 bit (AMD64)]
    ---------------------------------
    forloop :11.92378 => [10...100009]
    ---------------------------------
    listComp :7.27866 => [10...100009]
    ---------------------------------
    mapCall :12.92113 => [10...100009]
    ---------------------------------
    genExpr :10.50988 => [10...100009]
    ---------------------------------
    genFunc :10.56482 => [10...100009]

    Process finished with exit code 0

    这个结果比较符合我们的预期...

    • 在自定义函数下,map的速度比for循环要慢
    • 列表解析式速度是最块的.
    • 生成器表达式的速度比列表解析式要慢,但是与生成器函数差不多.

    进阶版本

    这个结果主要是由于python解释器的实现造成的.

    同时也说明一个问题... 我们的计时器不够科学...

    于是下面我们来优化一下我们的计时器.

    • 考虑平台的兼容性,在类unix系统中,time.time可以提供更好的解析
    • 由于随机的系统载入可能引起的波动,我们在测试中取最短时间比取总运行时间要更可靠.

    改版后的计时器

    import time
    import sys

    if sys.platform[:3]=='win':
    timefunc = time.clock
    else:
    timfunc = time.time


    def trace(*args):
    """
    used for debuging
    :param args:
    :return:
    """

    pass

    def timer(func,*pargs,**kargs):
    _reps = kargs.pop('_reps',1000)
    trace(func,pargs,kargs,_reps)
    repslist = range(_reps)
    start = timefunc()
    for i in repslist:
    ret = func(*pargs,**kargs)
    elapsed = timefunc()-start
    return (elapsed,ret)


    def best(func,*pargs,**kargs):
    _reps = kargs.pop('_reps',50)
    best=2**32
    for i in range(_reps):
    (time,ret)=timer(func,*pargs,_reps=1,**kargs)
    if time <best: best=time
    return (best,ret)

    改版后的测试代码

    from timer import timer
    from timer import best
    import sys

    reps = 100000
    repslist = range(reps)

    def forloop():
    res = []
    for x in repslist:
    res.append(x+10)
    return res

    def listComp():
    return [x+10 for x in repslist]

    def mapCall():
    return list(map(lambda x:x+10,repslist))

    def genExpr():
    return list(x+10 for x in repslist)

    def genFunc():
    def gen():
    for x in repslist:
    yield x+10
    return list(gen())

    print(sys.version)

    for tester in (timer,best):
    print(f'<{tester.__name__}>')
    for test in(forloop,listComp,mapCall,genExpr,genFunc):
    elapsed,result = tester(test)
    print('-'*35)
    print('%-9s:%.5f => [%s...%s]'%(test.__name__,elapsed,result[0],result[-1]))

    来看一下结果

    3.7.4 (default, Aug  9 2019, 18:34:13) [MSC v.1915 64 bit (AMD64)]
    <timer>
    -----------------------------------
    forloop :11.18427 => [10...100009]
    -----------------------------------
    listComp :7.33068 => [10...100009]
    -----------------------------------
    mapCall :13.33474 => [10...100009]
    -----------------------------------
    genExpr :11.25375 => [10...100009]
    -----------------------------------
    genFunc :11.03975 => [10...100009]
    <best>
    -----------------------------------
    forloop :0.00904 => [10...100009]
    -----------------------------------
    listComp :0.00525 => [10...100009]
    -----------------------------------
    mapCall :0.01133 => [10...100009]
    -----------------------------------
    genExpr :0.00845 => [10...100009]
    -----------------------------------
    genFunc :0.00785 => [10...100009]

    从运行的最快速度来看的话,完全符合我们上面的结论.

    • 列表解析式的速度是最快的
    • map函数比正常的for循环要慢
    • 生成器表达式比for循环要快,速度与生成器函数差不太多.

    结论:

    其实这篇文章写来纯粹是为了好玩的. 既然选择了python...就别太纠结运行速度了,毕竟python只负责貌美如花...

    python代码的优化,首先考虑的是可读性和简单性,其次实在闲的蛋疼了再去优化性能.

  • 相关阅读:
    基于XMPP的即时通信系统的建立 — XMPP IQ详解
    XMPPManager 解析
    Xcode 工程文件“.xcodeproj”文件夹解析
    Description &&debugDescription && runtime(debug模式下调试model)
    day04作业
    数字、字符串、列表、字典,jieba库,wordcloud词云
    if,for,异常,random模块,计算圆周率
    day03
    day02
    计算机基础
  • 原文地址:https://www.cnblogs.com/thecatcher/p/12490223.html
Copyright © 2011-2022 走看看