zoukankan      html  css  js  c++  java
  • 《Linux内核原理与分析》系统调用的三层机制

    系统调用的三层机制

    用户态、内核态和中断

    • 用户态。较低的执行级别,只能访问一部分内存,只能执行一部分指令。
    • 内核态。高级执行级别,可以访问任意物理内存,可以执行特权指令。
    • 中断。系统从用户态进入内核态的主要方式。有硬件中断和软中断。系统调用就是通过软中断进入内核态。

    上下文切换

    用户态切换到内核态时,就要把用户态寄存器上下文保存起来,同时要把内核态寄存器的值放到当前cpu中。int指令出发中断机制会在堆栈上保存一些寄存器的值,会保存(SAVE_ALL)用户态栈顶的值当时的状态字(flag)当时的CS:EIP的值。同时会将内核态的这些寄存器的值加载到cpu。其中内核态CS:EIP指向中断处理程序的入口,如果是系统调用则指向system_call,当中断结束后执行restore_all和INTERRUPT_RETURN。

    API和系统调用

    API就是系统调用的库函数,是一个函数定义。系统调用是通过软中断向内核发出了中断请求,int指令的执行就会触发一个中断请求,一个API可能只对应一个系统调用,也可能由多个系统调用实现。

    Linux中通过int $0x80来触发系统调用的执行,内核给每个系统调用一个编号,即系统调用号来指明是哪个系统调用,通过EAX寄存器传递。

    无参数系统调用

    依次通过c语言和内嵌汇编的c语言实现time()函数中封装的系统调用。

    time.c

    课本上给出的time.c在编译时遇到如下问题:

    查看struct tm发现应该是mday:

    修改后代码如下:

    修改后顺利运行:

    内嵌汇编的代码运行顺利:

    自选系统调用access

    其实没什么大区别,C语言代码及运行结果如图:

    内嵌汇编的代码及运行结果如图,比c语言代码有所简化:

    带两个参数的系统调用

    同样运行顺利,代码如下:

    通用库函数syscall

    新增的没有被封装好的系统调用可以通过syscall(系统调用号,参数表)实现,实际上比前两种方式舒服很多。

    于是我们需要知道系统调用对应的系统调用号,在编译器中通过查看syscall.h中引用的unistd.h文件可以查看系统定义的系统调用号表。

    至于为什么unistd.h中的宏定义的变量名和我们使用的不一样,是因为在bits/syscall.h中又进行了一次宏定义:

    这样应该更有益于程序的可读性和不同版本的兼容性(兼容性是官方的解释,但我现在对不同版本之间的兼容不报什么希望)。

    感想

    在查看系统调用号表时,实际上系统中有大量的unistd.h,包括i386、x86_64安装过的mykernel和Linuxkernel以及许多不知道来源的。通常是在/usr/include/asm目录下,但在我的电脑上甚至没有asm这个目录。还好编译器中链接到的文件是在搜索目录中的,所以能比较快的找到需要的头文件。

    之前在编程中要用到系统中的命令都是由system(command)实现,现在想来这应该是通过shell的封装来调用的系统函数,效率应该比直接在程序中进行系统调用低不少。

    一个小问题

    这章之后对Linux系统的层次似乎多了些理解。按照我的理解,内核处于最底层,c语言中的系统调用和shell中的内建命令都是通过调用内核中的函数实现,是对内核中的函数的不同的封装。C语言中syscall()是直接调用内核中的函数,而C语言中的system()函数则是通过调用shell间接的调用内核中的函数,所以命令可以和终端中的写法保持一致,传参也是直接传字符串。希望这么理解是对的,在以后的实践中去检验。

  • 相关阅读:
    函数式宏定义与普通函数
    linux之sort用法
    HDU 4390 Number Sequence 容斥原理
    HDU 4407 Sum 容斥原理
    HDU 4059 The Boss on Mars 容斥原理
    UVA12653 Buses
    UVA 12651 Triangles
    UVA 10892
    HDU 4292 Food
    HDU 4288 Coder
  • 原文地址:https://www.cnblogs.com/thechosenone95/p/9932535.html
Copyright © 2011-2022 走看看