zoukankan      html  css  js  c++  java
  • tensorboard 使用教程

    转载自 csdn

    import tensorflow as tf
    import numpy as np
    
    
    def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):  # activation_function=None线性函数
        layer_name = "layer%s" % n_layer
        with tf.name_scope(layer_name):
            with tf.name_scope('weights'):
                Weights = tf.Variable(tf.random_normal([in_size, out_size]))  # Weight中都是随机变量
                tf.summary.histogram(layer_name + "/weights", Weights)  # 可视化观看变量
            with tf.name_scope('biases'):
                biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)  # biases推荐初始值不为0
                tf.summary.histogram(layer_name + "/biases", biases)  # 可视化观看变量
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b = tf.matmul(inputs, Weights) + biases  # inputs*Weight+biases
                tf.summary.histogram(layer_name + "/Wx_plus_b", Wx_plus_b)  # 可视化观看变量
            if activation_function is None:
                outputs = Wx_plus_b
            else:
                outputs = activation_function(Wx_plus_b)
            tf.summary.histogram(layer_name + "/outputs", outputs)  # 可视化观看变量
            return outputs
    
            # 创建数据x_data,y_data
    
    
    x_data = np.linspace(-1, 1, 300)[:, np.newaxis]  # [-1,1]区间,300个单位,np.newaxis增加维度(后面多一个1)
    noise = np.random.normal(0, 0.05, x_data.shape)  # 噪点
    y_data = np.square(x_data) - 0.5 + noise
    
    with tf.name_scope('inputs'):  # 结构化
        xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
        ys = tf.placeholder(tf.float32, [None, 1], name='y_input')
    
    # 三层神经,输入层(1个神经元),隐藏层(10神经元),输出层(1个神经元)
    l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)  # 隐藏层
    prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)  # 输出层
    
    # predition值与y_data差别
    with tf.name_scope('loss'):
        loss = tf.reduce_mean(
            tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))  # square()平方,sum()求和,mean()平均值
        tf.summary.scalar('loss', loss)  # 可视化观看常量
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)  # 0.1学习效率,minimize(loss)减小loss误差
    
    init = tf.initialize_all_variables()
    sess = tf.Session()
    # 合并到Summary中
    merged = tf.summary.merge_all()
    # 选定可视化存储目录
    writer = tf.summary.FileWriter("Desktop/", sess.graph)
    sess.run(init)  # 先执行init
    
    # 训练1k次
    for i in range(1000):
        sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
        if i % 50 == 0:
            result = sess.run(merged, feed_dict={xs: x_data, ys: y_data})  # merged也是需要run的
            writer.add_summary(result, i)  # result是summary类型的,需要放入writer中,i步数(x轴)
    
    

    然后在terminal中:

    tensorboard --logdir=/path/to/log-directory
    
  • 相关阅读:
    imp.load_source的用法
    第12周翻译
    第十周学习笔记
    翻译:高级t
    t-sql
    9周学习笔记
    第8周学习笔记
    t-sql的楼梯:超越基本级别6:使用案例表达式和IIF函数
    数据库设计层次3:构建表
    第七周学习笔记
  • 原文地址:https://www.cnblogs.com/theodoric008/p/7992852.html
Copyright © 2011-2022 走看看